Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T16:53:19.049Z Has data issue: false hasContentIssue false

Characterization of a leucine aminopeptidase of Babesia gibsoni

Published online by Cambridge University Press:  24 June 2009

H. JIA
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
M. A. TERKAWI
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
G. O. ABOGE
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
Y.-K. GOO
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
Y. LUO
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
Y. LI
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
J. YAMAGISHI
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
Y. NISHIKAWA
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
I. IGARASHI
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
C. SUGIMOTO
Affiliation:
Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
K. FUJISAKI
Affiliation:
Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
X. XUAN*
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
*
*Corresponding author: National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan. Tel: +81 155 49 5648. Fax: +81 155 49 5643. E-mail: [email protected]

Summary

Peptidases of parasitic protozoa are currently under intense investigation in order to identify novel virulence factors, drug targets, and vaccine candidates, except in Babesia. Leucine aminopeptidases in protozoa, such as Plasmodium and Leishmania, have been identified to be involved in free amino acid regulation. We report here the molecular and enzymatic characterization, as well as the localization of a leucine aminopeptidase, a member of the M17 cytosolic aminopeptidase family, from B. gibsoni (BgLAP). A functional recombinant BgLAP (rBgLAP) expressed in Escherichia coli efficiently hydrolysed synthetic substrates for aminopeptidase, a leucine substrate. Enzyme activity of the rBgLAP was found to be optimum at pH 8·0 and at 37°C. The substrate profile was slightly different from its homologue in P. falciprum. The activity was also strongly dependent on metal divalent cations, and was inhibited by bestatin, which is a specific inhibitor for metalloprotease. These results indicated that BgLAP played an important role in free amino acid regulation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aboge, G. O., Jia, H., Terkawi, M. A., Goo, Y. K., Nishikawa, Y., Sunaga, F., Namikawa, K., Tsuji, N., Igarashi, I., Suzuki, H., Fujisaki, K. and Xuan, X. (2008). Cloning, expression, and characterization of Babesia gibsoni dihydrofolate reductase-thymidylate synthase: inhibitory effect of antifolates on its catalytic activity and parasite proliferation. Antimicrobial Agents and Chemotherapy 52, 40724080. doi: 10.1128/AAC.00384-08.CrossRefGoogle ScholarPubMed
Acosta, D., Cancela, M., Piacenza, L., Roche, L., Carmona, C. and Tort, J. F. (2008). Fasciola hepatica leucine aminopeptidase, a promising candidate for vaccination against ruminant fasciolosis. Molecular and Biochemical Parasitology 158, 5264. doi: 10.1016/S0166-6851(08)00279-X.CrossRefGoogle ScholarPubMed
Bartling, D. and Weiler, E. W. (1992). Leucine aminopeptidase from Arabidopsis thaliana. Molecular evidence for a phylogenetically conserved enzyme of protein turnover in higher plants. European Journal of Biochemistry 205, 425431.CrossRefGoogle ScholarPubMed
Boozer, A. L. and MacIntire, D. K. (2003). Canine babesiosis. The Veterinary clinics of North America. Small Animal Practice 33, 885904, viii.CrossRefGoogle ScholarPubMed
Brownlees, J. and Williams, C. H. (1993). Peptidases, peptides, and the mammalian blood-brain barrier. Journal of Neurochemistry 60, 793803.CrossRefGoogle ScholarPubMed
Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162, 156159.CrossRefGoogle ScholarPubMed
Dalal, S. and Klemba, M. (2007). Roles for two aminopeptidases in vacuolar hemoglobin catabolism in Plasmodium falciparum. The Journal of Biological Chemistry 282, 3597835987.CrossRefGoogle ScholarPubMed
Fukumoto, S., Xuan, X., Nishikawa, Y., Inoue, N., Igarashi, I., Nagasawa, H., Fujisaki, K. and Mikami, T. (2001). Identification and expression of a 50-kilodalton surface antigen of Babesia gibsoni and evaluation of its diagnostic potential in an enzyme-linked immunosorbent assay. The Journal of Clinical Microbiology 39, 26032609.CrossRefGoogle ScholarPubMed
Hatta, T., Kazama, K., Miyoshi, T., Umemiya, R., Liao, M., Inoue, N., Xuan, X., Tsuji, N. and Fujisaki, K. (2006). Identification and characterisation of a leucine aminopeptidase from the hard tick Haemaphysalis longicornis. International Journal for Parasitology 36, 11231132. doi: 10.1016/S0020-7519(06)00182-2.CrossRefGoogle ScholarPubMed
Ikadai, H., Tanaka, H., Shibahara, N., Matsuu, A., Uechi, M., Itoh, N., Oshiro, S., Kudo, N., Igarashi, I. and Oyamada, T. (2004). Molecular evidence of infections with Babesia gibsoni parasites in Japan and evaluation of the diagnostic potential of a loop-mediated isothermal amplification method. Journal of Clinical Microbiology 42, 24652469. 10.1128/JCM.42.6.2465-2469.CrossRefGoogle ScholarPubMed
Jia, H., Terkawi, M. A., Aboge, G. O., Goo, Y. K., Zhou, J., Lee, E. G., Nishikawa, Y., Igarashi, I., Fujisaki, K. and Xuan, X. (2008). Babesia gibsoni: identification of an immunodominant, interspersed repeat antigen. Experimental Parasitology 118, 146149. doi: 10.1016/S0014-4894(07)00194-4.CrossRefGoogle ScholarPubMed
Kato, S., Ohtoko, K., Ohtake, H. and Kimura, T. (2005). Vector-capping: a simple method for preparing a high-quality full-length cDNA library. DNA Research 12, 5362.CrossRefGoogle ScholarPubMed
Knowles, G. (1993). The effects of arphamenine-A, an inhibitor of aminopeptidases, on in-vitro growth of Trypanosoma brucei brucei. The Journal of Antimicrobial Chemotherapy 32, 172174.CrossRefGoogle ScholarPubMed
Lau, A. O. (2009). An overview of the Babesia, Plasmodium and Theileria genomes: A comparative perspective. Molecular and Biochemical Parasitology 164, 18. doi: 10.1016/S0166-6851(08)00279-X.CrossRefGoogle ScholarPubMed
Marcilla, A., De La Rubia, J. E., Sotillo, J., Bernal, D., Carmona, C., Villavicencio, Z., Acosta, D., Tort, J., Bornay, F. J., Esteban, J. G. and Toledo, R. (2008). Leucine aminopeptidase is an immunodominant antigen of Fasciola hepatica excretory and secretory products in human infections. Clinical and Vaccine Immunology 15, 95–100. doi: 10.1128/CVI.00338-07.CrossRefGoogle ScholarPubMed
Morty, R. E. and Morehead, J. (2002). Cloning and characterization of a leucyl aminopeptidase from three pathogenic Leishmania species. The Journal of Biological Chemistry 277, 2605726065. doi: 10.1074/jbc.M202779200.CrossRefGoogle ScholarPubMed
Muhlnickel, C. J., Jefferies, R., Morgan-Ryan, U. M. and Irwin, P. J. (2002). Babesia gibsoni infection in three dogs in Victoria. Australian Veterinary Journal 80, 606610.CrossRefGoogle ScholarPubMed
Potgieter, F. T. and Els, H. J. (1977). The fine structure of intra-erythrocytic stages of Babesia bigemina. The Onderstepoort Journal of Veterinary Research 44, 157168.Google ScholarPubMed
Potgieter, F. T., Els, H. J. and Vuuren, A. S. (1976). The fine structure of merozoites of Babesia bovis in the gut epithelium of Boophilus microplus. The Onderstepoort Journal of Veterinary Research 43, 19.Google ScholarPubMed
Rogi, T., Tsujimoto, M., Nakazato, H., Mizutani, S. and Tomoda, Y. (1996). Human placental leucine aminopeptidase/oxytocinase. A new member of type II membrane-spanning zinc metallopeptidase family. The Journal of Biological Chemistry 271, 5661.CrossRefGoogle ScholarPubMed
Stack, C. M., Lowther, J., Cunningham, E., Donnelly, S., Gardiner, D. L., Trenholme, K. R., Skinner-Adams, T. S., Teuscher, F., Grembecka, J., Mucha, A., Kafarski, P., Lua, L., Bell, A. and Dalton, J. P. (2007). Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development. The Journal of Biological Chemistry 282, 20692080. doi: 10.1074/jbc.M609251200.CrossRefGoogle ScholarPubMed
Taylor, A. (1993). Aminopeptidases: structure and function. The FASEB Journal 7, 290298.CrossRefGoogle ScholarPubMed
Umezawa, H., Aoyagi, T., Suda, H., Hamada, M. and Takeuchi, T. (1976). Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. The Journal of Antibiotics 29, 9799.CrossRefGoogle ScholarPubMed