Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T13:04:27.388Z Has data issue: false hasContentIssue false

Characterization of a HMG2-like protein from Schistosoma mansoni

Published online by Cambridge University Press:  06 April 2009

M. R. Fantappié
Affiliation:
Departamento de Bioquímica Médico ICB/CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, CP 68041, CEP 21910, Rio de Janeiro R.J., Brasil
F. D. Rumjanek
Affiliation:
Departamento de Bioquímica Médico ICB/CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, CP 68041, CEP 21910, Rio de Janeiro R.J., Brasil

Summary

An HMG2-like protein was purified from nuclear extracts of adult Schistosoma mansoni. Investigation of the amino acid composition of the schistosome HMG2-like protein showed that glutamic acid, glycine, aspartic acid and lysine were the most abundant. Carbohydrate analysis showed that the HMG2-like protein presented a low degree of glycosylation, galactose or glucose being the major monosaccharide constituent. Incubation of live schistosomes with 32P followed by isolation of nuclear proteins showed that the HMG-2 like protein could be phosphorylated. Partial sequence analysis of cyanogen bromide peptides revealed the occurrence of a phosphorylation consensus motif. The schistosome HMG2-like protein was found to bind preferentially to single-stranded DNA. The results suggest that the major non-histone S. mansoni nuclear protein belongs to the HMG family.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldwin, J. P. (1992). Protein nucleic-acid interactions in nucleosomes. Current Opinion in Structural Biology 2, 7883.CrossRefGoogle Scholar
Bustin, M., Lehn, D. A. & Landsman, D. (1990). Structural features of the HMG chromosomal proteins and their genes. Biochimica et Biophysica Acta 1049, 231–43.CrossRefGoogle ScholarPubMed
Churchill, M. E. A. & Travers, A. A. (1991). Protein motifs that recognize structural features of DNA. Trends in Biochemical Science 16, 92–7.CrossRefGoogle ScholarPubMed
Dubois, M. G., Hamilton, K. A., Rebers, J. K. & Smith, P. A. (1956). Colorimetric method for determination o sugars and related substances. Analytical Biochemistry 28, 350–6.Google Scholar
Elton, T. S. & Reeves, R. (1985). Microheterogeneity of the mammalian high mobility group (HMG) proteins 1 and 2 investigated by reverse-phase high performance liquid chromatography. Analytical Biochemistry 114, 403–16.CrossRefGoogle Scholar
Fried, M. & Crothers, D. M. (1981). Equilibria and kinetics of Lac repressor operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Research 79, 6505–25.CrossRefGoogle Scholar
Goodwin, G. H., Sanders, C. & Johns, E. W. (1973). A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. European Journal of Biochemistry 38, 1419.CrossRefGoogle ScholarPubMed
Isackson, P. J., Fishback, J. L., Bidney, D. L. & Reeck, G. R. (1979). Preferential affinity of high molecular weight high mobility group non-histone chromatin proteins for single-stranded DNA. Journal of Biological Chemistry 254, 5569–72.CrossRefGoogle ScholarPubMed
Hisatake, K., Nishimura, T., Maeda, Y., Hanada, K. I., Song, C. Z. & Muramatsu, M. (1991). Cloning and structural analysis of cDNA and the gene for mouse transcription factor UBF. Nucleic Acids Research 19, 4631–7.CrossRefGoogle ScholarPubMed
Kennely, P. J. & Krebs, E. G. (1991). Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. Journal of Biological Chemistry 266, 15555–8.CrossRefGoogle Scholar
Lilley, D. M. (1992). HMG has DNA wrapped up. Nature, London 357, 282.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurements with the folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Matsudaira, P. (1987). Sequence from picomole quantities of protein electroblotted onto polyviniliden difluoride membranes. Journal of Biological Chemistry 262, 10035–8.CrossRefGoogle ScholarPubMed
Phillips, S. E. V. (1992). Protein-nucleic acid interactions. Current Opinion in Structural Biology 2, 6970.CrossRefGoogle Scholar
Rabelo, E. M. L., Campos, E. G., Fantappié, M. R. & Rumjanek, F. D. (1992). Extraction and partial characterization of non-histone nuclear proteins of Schistosoma mansoni. Journal of Cellular Biochemistry 49, 19.CrossRefGoogle ScholarPubMed
Reeves, R., Chang, D. & Chung, S. C. (1981). Carbohydrate modifications of the high mobility group proteins. Proceedings of the National Academy of Sciences, USA 78, 6704–8.CrossRefGoogle ScholarPubMed
Roach, P. J. (1991). Multisite and hierarchial protein phosphorylation. Journal of Biological Chemistry 266, 14139–42.CrossRefGoogle Scholar
Rumjanek, F. D., Braga, V. M. M. & Kelly, C. H. (1989). DNA binding proteins of Schistosoma mansoni recognizing a hexanucleotide motif occurring in genes regulated by steroids. Comparative Biochemistry and Physiology 94B, 807–12.Google ScholarPubMed
Simpson, A. J. G. & Knight, M. (1985). Cloning of a major developmentally regulated gene expressed in mature females of Schistosoma mansoni. Molecular ant Biochemical Parasitology 18, 2535.CrossRefGoogle Scholar
Smithers, S. R. & Terry, R. J. (1965). The infection of laboratory hosts with cercariae of Schistosoma manson and the recovery of adult worms. Parasitology 55, 695700.CrossRefGoogle Scholar
Travis, A., Amsterdam, A., Belanger, C. & Grosschedl, R. (1991). LEF-1, a gene encoding a lymphoid-specific protein, with an HMG domain, regulates T-cell receptor alfa enhancer function. Genes and Development 5, 880–94.CrossRefGoogle Scholar
Walker, J. M., Gooderham, K. & Johns, E. W. (1979). The isolation and partial sequence of peptides produced by cyanogen bromide cleavage of calf thymus non-histone chromosomal high-mobility-group protein 2; sequence homology with non-histone chromosomal high-mobility-group protein 1. The Biochemical Journal 181, 659–65.CrossRefGoogle ScholarPubMed
Van De Wetering, M., Oosterwegel, M., Dooijes, D. & Clevers, H. (1991). Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO Journal 10, 123–32.CrossRefGoogle Scholar