Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T17:53:10.989Z Has data issue: false hasContentIssue false

Biological effects of lithium chloride on the insect trypanosomatid Herpetomonas samuelpessoai

Published online by Cambridge University Press:  06 April 2009

C. V. Nakamura
Affiliation:
Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, C.P. 2486, Belo Horizonte, 31270, MG, Brasil
A. S. Pinto
Affiliation:
Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, C.P. 2486, Belo Horizonte, 31270, MG, Brasil

Summary

Effects of lithium chloride on growth, differentiation and respiration of Herpetomonas samuelpessoai, cultivated in a synthetic medium were studied both at 28 and 37 °C. Low concentration of lithium chloride (15 mM) stimulated growth at 37 °C. In addition, the protozoon tolerated high concentrations (60–150 mM) of the salt at both incubation temperatures. In general, 15 mM lithium chloride increased and 150 mM decreased oxygen uptake when glucose, glutamic acid and proline were used as substrates. However, at 28 °C after incubation for 96 h, the highest concentration increased oxygen uptake in the presence of glucose. Sodium butyrate induced cell differentiation in H. samuelpessoai both at 28 and 37 °C. High concentration (150 mM) of lithium chloride inhibited cell differentiation of H. samuelpessoai induced by both controlled growth conditions and butyrate addition. The results obtained are described in this paper.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelopoulos, E. (1970). Pellicular microtubules in the family Trypanosomatidae. Journal of Protozoology 17, 3951.CrossRefGoogle ScholarPubMed
Angluster, J., Bunn, M. M. & De Souza, w. (1977). Effect of 2-deoxy-D-glucose on differentiation of Herpetomonas samuelpessoai. Journal of Parasitology 63, 922–4.CrossRefGoogle ScholarPubMed
Becerra, J. & Encina, C. L. (1987). Biological effects of lithium: experimental analysis in plant cytokinesis. Experientia 43, 1025–7.CrossRefGoogle Scholar
Bunn, M. M., Soares, T. C. B., Angluster, J. & De Souza, w. (1977). Effect of 2-deoxy-D-glucose on Herpetomonas samuelpessoai. Zeitschrift für Parasitenkunde 52, 245–56.CrossRefGoogle ScholarPubMed
Burstein, D. E., Seeley, P. J. & Greene, L. A. (1985). Lithium ion inhibits nerve growth factor-induced neurite outgrowth and phosphorylation of nerve growth factor-modulated microtubule-associated proteins. Journal of Cell Biology 101, 862–70.CrossRefGoogle ScholarPubMed
Carulli, G., Marini, A., Azzarà, A., Petrini, M., Ruocco, L. & Ambrogi, F. (1985). Modifications in the phagocytosis of human neutrophils induced by vinblastine and cytochalasin B: the effects of lithium. Acta Haematologica 74, 81–5.CrossRefGoogle ScholarPubMed
De Andrade, P. P. & De Almeida, D. F. (1980). Herpetomonas samuelpessoai: roles of subpellicular microtubules in shape transitions of trypanosomatids. Experimental Parasitology 50, 5766.CrossRefGoogle ScholarPubMed
Doukas, M. A., Niskanen, E. O. & Quesenberry, P. J. (1986). Effect of lithium on stem cell and stromal cell proliferation in vitro. Experimental Hematology 14, 215–21.Google ScholarPubMed
Fagundes, L. J. M., Angluster, J., Gilbert, B. & Roitman, I. (1980). Synthesis of sterols in Herpetomonas samuelpessoai: influence of growth conditions. Journal of Protozoology 27, 238–41.CrossRefGoogle Scholar
Fishman, P. H., Brady, R. O., Henneberry, R. C. & Freese, E. (1978). Alterations of surface glycoconjugates and cell morphology induced by butyric acid. In Cell Surface Carbohydrate Chemistry, vol. 5, (ed. Harmon, R. E.), pp. 153–80. New York: Academic Press.CrossRefGoogle Scholar
Gallicchio, V. S. (1985). Inhibition of dimethyl sulfoxide-induced Friend erythroleukemia cell differentiation in vitro by lithium chloride. Experimental Cell Biology 53, 287–93.Google ScholarPubMed
Gelfand, E. W., Dosch, H. M., Hastings, D. & Shore, A. (1979). Lithium: a modulator of cyclic AMP-dependent events in lymphocytes? Science 203, 365–7.CrossRefGoogle ScholarPubMed
Gemba, M., Tachibana, A., Sugihara, K., Hori, M. & Nakajima, M. (1985). Inhibitory effect of lithium on p-aminohippurate transport in rat kidney cortex in vitro. Renal Physiology 8, 179–88.Google ScholarPubMed
Gibbons, B. H. & Gibbons, I. R. (1984). Lithium reversibly inhibits microtubule-based motility in sperm flagella. Nature, London 309, 560–2.CrossRefGoogle ScholarPubMed
Hori, C. & Oka, T. (1979). Induction by lithium ion of multiplication of mouse mammary epithelium in culture. Proceedings of the National Academy of Sciences, USA 76, 2823–7.CrossRefGoogle ScholarPubMed
Hutner, S. H. (1972). Inorganic nutrition. Annual Review of Microbiology 26, 313–46.CrossRefGoogle ScholarPubMed
Janovy, J. Jr., Daggett, P. M. & Lee, K. W. (1974). Herpetomonas megaseliae: architectural rearrangements during amastigote formation. Journal of Parasitology 60, 716–18.CrossRefGoogle ScholarPubMed
Levy, R. & Livne, A. (1984). The erythrocyte membrane in essential hypertension characterization of the temperature dependence of lithium efflux. Biochimica et Biophysica Acta 769, 41–8.CrossRefGoogle ScholarPubMed
Pinto, A. S., Pinto, A. C., De Souza, W. & Angluster, J. (1982). Fatty acid composition in Herpetomonas samuelpessoai: influence of growth conditions. Comparative Biochemistry and Physiology 73B, 351–6.Google Scholar
Plenge, P. (1985). Lithium effects on brain energy metabolism. In Metal Ions in Neurology and Psychiatry (ed. Gabay, S., Harris, J. & Ho, B. T.), pp. 153–64. New York: Alan R. Liss.Google Scholar
Ptashne, K., Stockdale, F. E. & Conlon, S. (1980). Initiation of DNA synthesis in mammary epithelium and mammary tumors by lithium ions. Journal of Cellular Physiology 103, 41–6.CrossRefGoogle ScholarPubMed
Roitman, C., Roitman, I. & Azevedo, H. P. (1972). Growth of an insect trypanosomatid at 37 °C in a defined medium. Journal of Protozoology 19, 346–9.CrossRefGoogle Scholar
Roitman, I., Brener, Z., Roitman, C. & Kitajima, W. E. (1976). Demonstration that Leptomonas pessoai Galvão, Oliveira, Carvalho & Veiga, 1970, is a Herpetomonas. Journal of Protozoology 23, 291–3.CrossRefGoogle Scholar
Rozengurt, E. & Mendoza, S. (1980). Monovalent ion fluxes and the control of cell proliferation in cultured fibroblasts. Annals of the New York Academy of Sciences 339, 175–90.CrossRefGoogle ScholarPubMed
Rubin, H. (1975). Central role of magnesium in coordinate control of metabolism and growth in animal cells. Proceedings of the National Academy of Sciences, USA 72, 3551–5.CrossRefGoogle ScholarPubMed
Rybak, S. M. & Stockdale, F. E. (1981). Growth effects of lithium chloride in BALB/c 3T3 fibroblasts and Madin-Darby canine kidney epithelial cells. Experimental Cell Research 136, 263–70.CrossRefGoogle ScholarPubMed
Simpson, L. & Braly, P. (1970). Synchronization of Leishmania tarentolae by hydroxyurea. Journal of Protozoology 17, 511–17.CrossRefGoogle ScholarPubMed
Souza, M. C. M., Reis, A. P., Silva, W. D. & Brener, Z. (1974). Mechanism of acquired immunity induced by Leptomonas pessoai against Trypanosoma cruzi in mice. Journal of Protozoology 21, 579–83.CrossRefGoogle ScholarPubMed
Stanley, S. O. & Morita, R. Y. (1968). Salinity effect on the maximal growth temperature of some bacteria isolated from marine environments. Journal of Bacteriology 95, 169–73.CrossRefGoogle Scholar
Tomooka, Y., Imagawa, W., Nandi, S. & Bern, H. A. (1983). Growth effect of lithium on mouse mammary epithelial cells in serum-free collagen gel culture. Journal of Cellular Physiology 117, 290–6.CrossRefGoogle ScholarPubMed