Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T07:59:22.511Z Has data issue: false hasContentIssue false

Bayesian geostatistical prediction of the intensity of infection with Schistosoma mansoni in East Africa

Published online by Cambridge University Press:  06 September 2006

A. C. A. CLEMENTS
Affiliation:
Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK Schistosomiasis Control Initiative, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
R. MOYEED
Affiliation:
School of Mathematics and Statistics, University of Plymouth, Plymouth, UK
S. BROOKER
Affiliation:
Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK

Abstract

A Bayesian geostatistical model was developed to predict the intensity of infection with Schistosoma mansoni in East Africa. Epidemiological data from purpose-designed and standardized surveys were available for 31458 schoolchildren (90% aged between 6 and 16 years) from 459 locations across the region and used in combination with remote sensing environmental data to identify factors associated with spatial variation in infection patterns. The geostatistical model explicitly takes into account the highly aggregated distribution of parasite distributions by fitting a negative binomial distribution to the data and accounts for spatial correlation. Results identify the role of environmental risk factors in explaining geographical heterogeneity in infection intensity and show how these factors can be used to develop a predictive map. Such a map has important implications for schisosomiasis control programmes in the region.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, N., Moyeed, R. and Stander, J. ( 2000). Spatial modelling of individual-level parasite counts using the negative binomial distribution. Biostatistics 1, 453463.CrossRefGoogle Scholar
Alexander, N. D., Moyeed, R. A., Hyun, P. J., Dimber, Z. B., Bockarie, M. J., Stander, J., Grenfell, B. T., Kazura, J. W. and Alpers, M. P. ( 2003). Spatial variation of Anopheles-transmitted Wuchereria bancrofti and Plasmodium falciparum infection densities in Papua New Guinea. Filaria Journal 2, 14.CrossRefGoogle Scholar
Anderson, R. M. ( 1982). The population dynamics and control of hookworm and roundworm infection. In Population Dynamics of Infectious Diseases: Theory and Applications ( ed. Anderson, R. M.), pp. 67109. Chapman and Hall, London.CrossRef
Anderson, R. M. ( 1993). Epidemiology. In Modern Parasitology ( ed. Cox, F. E. G.), pp. 75166. Blackwell, Oxford.CrossRef
Anderson, R. M. and May, R. M. ( 1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford, UK.
Appleton, C. C. ( 1978). Review of literature on abiotic factors influencing the distribution and life-cycles of Bilharziasis intermediate host snails. Malacological Review 11, 125.Google Scholar
Basáñez, M.-G. and Boussinesq, M. ( 1999). Population biology of human onchocerciasis. Philosophical Transactions of the Royal Society, B 354, 809826.CrossRefGoogle Scholar
Brooker, S. ( 2002). Schistosomes, snails and satellites. Acta Tropica 82, 209216.CrossRefGoogle Scholar
Brooker, S., Clements, A. C. A. and Bundy, D. A. P. ( 2006). Global epidemiology, ecology and control of soil-transmitted helminth infections. Advances in Parasitology 62, 223265.CrossRefGoogle Scholar
Brooker, S., May, S. I., Issae, W., Hall, A., Kihamia, C. M., Lwambo, N. J. S., Wint, W., Rogers, D. J. and Bundy, D. A. P. ( 2001). Predicting the distribution of urinary schistosomiasis in Tanzania using satellite sensor data. Tropical Medicine and International Health 6, 9981007.CrossRefGoogle Scholar
Brooker, S. and Michael, E. ( 2000). The potential of geographical information systems and remote sensing in the epidemiology and control of human helminth infections. Advances in Parasitology 47, 245288.CrossRefGoogle Scholar
Brooker, S., Miguel, E. A., Moulin, S., Waswa, P., Namunyu, R., Guyatt, H. and Bundy, D. A. P. ( 2001). The potential of rapid screening methods for Schistosoma mansoni in Western Kenya. Annals of Tropical Medicine and Parasitology 95, 343351.CrossRefGoogle Scholar
Carabin, H., Escalona, M., Marshall, C., Vivas-Martinez, S., Botto, C., Joseph, L. and Basáñez, M.-G. ( 2003). Prediction of community prevalence of human onchocerciasis in the Amazonian onchocerciasis focus: Bayesian approach. Bulletin of the World Health Organization 81, 482490.Google Scholar
Clements, A., Lwambo, N., Blair, L., Nyandindi, U., Kaatano, G., Kinunghi, S., Webster, J., Fenwick, A. and Brooker, S. ( 2006). Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania. Tropical Medicine and International Health 11, 490503.CrossRefGoogle Scholar
Chan, M. S., Guyatt, H. L., Bundy, D. A., Booth, M., Fulford, A. J. and Medley, G. F. ( 1995). The development of an age structured model for schistosomiasis transmission dynamics and control and its validation for Schistosoma mansoni. Epidemiology and Infection 115, 325344.CrossRefGoogle Scholar
Clarke, S., Njagi, K., Jukes, M. C. H., Estambale, B., Khasakhala, L., Ajanga, A., Otido, J., Ochola, S., Magnussen, P. and Brooker, S. ( 2005). Intermittent preventive treatment in schools: malaria parasitaemia, anaemia and school performance [MIM-KN-409248]. Meeting abstract. Fourth MIM Pan-African Malaria Conference. Acta Tropica 95S, S133S134.Google Scholar
de Vlas, S. J., Nagelkerke, N. J., Habbema, J. D. and van Oortmarssen, G. J. ( 1993). Statistical models for estimating prevalence and incidence of parasitic diseases. Statistical Methods in Medical Research 2, 321.CrossRefGoogle Scholar
Diggle, P., Moyeed, R., Rowlingson, B. and Thompson, M. ( 2002). Childhood malaria in the Gambia: a case-study in model-based geostatistics. Applied Statistics 51, 493506.CrossRefGoogle Scholar
Diggle, P., Tawn, J. A. and Moyeed, R. ( 1998). Model-based geostatistics. Applied Statistics 47, 299350.CrossRefGoogle Scholar
Filipe, J. A. N., Boussinesq, M., Rez, A., Collins, A. C., Vivas-Martinez, S., Grillet, M.-G., Little, M. P. and Basáñez, M.-G. ( 2005). Human infection patterns and heterogeneous exposure in river blindness. Proceedings of the National Academy of Sciences, USA 102, 1526515270.CrossRefGoogle Scholar
Gemperli, A., Vounatsou, P., Kleinschmidt, I., Bagayoko, M., Lengeler, C. and Smith, T. ( 2004). Spatial patterns of infant mortality in Mali: the effect of malaria endemicity. American Journal of Epidemiology 159, 6472.CrossRefGoogle Scholar
Gemperli, A., Vounatsou, P., Sogoba, N. and Smith, T. ( 2006). Malaria mapping using transmission models: application to survey data from Mali. American Journal of Epidemiology 163, 289297.CrossRefGoogle Scholar
Grenfell, B. T., Das, P. K., Rajagopalan, P. K. and Bundy, D. A. P. ( 1990). Frequency distribution of lymphatic filariasis microfilariae in human population: population processes and statistical estimation. Parasitology 101, 417427.CrossRefGoogle Scholar
Guyatt, H. L., Smith, T., Gryseels, B., Lengeler, C., Mshinda, H., Siziya, S., Salanave, B., Mohome, N., Makwala, J., Ngimbi, K. P. and Tanner, M. ( 1994). Aggregation in schistosomiasis: comparison of the relationships between prevalence and intensity in different endemic areas. Parasitology 109, 4555.CrossRefGoogle Scholar
Hay, S. I., Graham, A. J. and Rogers, D. J. ( 2006). Global mapping of infectious diseases: methods, examples and emerging applications. Advances in Parasitology 62, 1381.Google Scholar
Hay, S. I., Randolph, S. E. and Rogers, D. J. ( 2000). Remote sensing and geographic information systems in epidemiology. Advances in Parasitology 47, 1344.Google Scholar
Kabatereine, N. B., Brooker, S., Tukahebwa, E. M., Kazibwe, F. and Onapa, A. ( 2004). Epidemiology and geography of Schistosoma mansoni in Uganda: implications for planning control. Tropical Medicine and International Health 9, 372380.CrossRefGoogle Scholar
Kleinschmidt, I., Omumbo, J., Briet, O., van de Giesen, N., Sogoba, N., Mensah, N. K., Windmeijer, P., Moussa, M. and Teuscher, T. ( 2001). An empirical malaria distribution map for West Africa. Tropical Medicine and International Health 6, 779786.CrossRefGoogle Scholar
Lwambo, N. J. S., Siza, J. E., Brooker, S., Bundy, D. A. P. and Guyatt, H. ( 1999). Patterns of concurrent infection with hookworm and schistosomiasis in school children in Tanzania. Transactions of the Royal Society of Tropical Medicine and Hygiene 93, 497502.CrossRefGoogle Scholar
Nodtvedt, A., Dohoo, I., Sanchez, J., Conboy, G., DesCjteaux, L., Keefe, G., Leslie, K. and Campbell, J. ( 2002). The use of negative binomial modelling in a longitudinal study of gastrointestinal parasite burdens in Canadian dairy cows. Canadian Journal of Veterinary Research 66, 249257.Google Scholar
Pflüger, W. ( 1980). Experimental epidemiology of schistosomiasis I. The prepatent period and cercarial production of Schistosoma mansoni in Biomphalaria snails at various constant temperatures. Zeitschrift für Parasitenkunde 63, 159169.Google Scholar
Pion, S. D. S., Filipe, J. A. N., Kamgno, J., Gardon, J., Basáñez, M.-G. and Boussinesq, M. ( 2006). Microfilarial distribution of Loa loa in the human host: population dynamics and epidemiological implications. Parasitology 131, 112.CrossRefGoogle Scholar
Prentice, M. A. ( 1972). Distribution, prevalence and transmission of schistosomiasis in Uganda. Uganda Medical Journal 1, 136139.Google Scholar
Raso, G., Matthys, B., N'Goran, E. K., Tanner, M., Vounatsou, P. and Utzinger, J. ( 2005). Spatial risk prediction and mapping of Schistosoma mansoni infections among schoolchildren living in western Côte d'Ivoire. Parasitology 131, 97108.CrossRefGoogle Scholar
Raso, G., Vounatsou, P., Singer, B. H., N'Goran, E. K., Tanner, M. and Utzinger, J. ( 2006). An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni-hookworm coinfection. Proceedings of the National Academy of Sciences, USA 103, 69346939.CrossRefGoogle Scholar
Shaw, D. J., Grenfell, B. T. and Dobson, A. P. ( 1998). Patterns of macroparasite aggregation in wildlife host populations. Parasitology 117, 597610.CrossRefGoogle Scholar
Sturrock, R. F. ( 1993). The intermediate hosts and host-parasite relationships. In Human Schistosomiasis ( ed. Jordan, P., Webbe, G. and Sturrock, R. F.), pp. 3385. CAB International, Wallingford.
Tatem, A. J., Noor, A. M. and Hay, S. I. ( 2005). Assessing the accuracy of satellite derived global and national urban maps in Kenya. Remote Sensing of Environment 96, 8797.CrossRefGoogle Scholar
Thogmartin, W. E., Sauer, J. R. and Knutson, M. G. ( 2004). A hierarchical spatial model of avian abundance with application to cerulean warblers. Ecological Applications 14, 17661779.CrossRefGoogle Scholar
Thomson, M. C., Connor, S. J., D'Alessandro, U., Rowlingson, B., Diggle, P., Cresswell, M. and Greenwood, B. ( 1999). Predicting malaria infections in Gambian children from satellite data and bed net use surveys: the importance of spatial correlation in the interpretation of results. American Journal of Tropical Medicine and Hygiene 61, 28.CrossRefGoogle Scholar
Webster, M., Correa-Oliveira, R., Gazzinelli, G., Viana, I. R., Fraga, L. A., Silveira, A. M. and Dunne, D. W. ( 1997). Factors affecting high and low human IgE responses to schistosome worm antigens in an area of Brazil endemic for Schistosoma mansoni and hookworm. American Journal of Tropical Medicine and Hygiene 57, 487494.CrossRefGoogle Scholar
Woolhouse, M. E. J., Etard, J.-F., Dietz, K., Ndhlovu, P. D. and Chandiwana, S. K. ( 1998). Heterogeneities in schistosome transmission dynamics and control. Parasitology 117, 475482.CrossRefGoogle Scholar
WORLD HEALTH ORGANIZATION. ( 1999). Report of the WHO informal consultation on schistosomiasis control. WHO/CDS/CPC/SIP/99.2. World Health Organization, Geneva.
Yang, G. J., Vounatsou, P., Zhou, X. N., Tanner, M. and Utzinger, J. ( 2005). A Bayesian-based approach for spatio-temporal modeling of county level prevalence of Schistosoma japonicum infection in Jiangsu province, China. International Journal for Parasitology 35, 155162.CrossRefGoogle Scholar
Yapi, Y. G., Briet, O. J., Diabate, S., Vounatsou, P., Akodo, E., Tanner, M. and Teuscher, T. ( 2005). Rice irrigation and schistosomiasis in savannah and forest areas of Côte d'Ivoire. Acta Tropica 93, 201211.CrossRefGoogle Scholar
Zheng, T., Salganik, M. J. and Gelman, A. ( 2006). How many people do you know in prison? Using overdispersion in count data to estimate social structure in networks. Journal of American Statistical Association 101, 409423.CrossRefGoogle Scholar