Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T07:34:48.930Z Has data issue: false hasContentIssue false

Antioxidant gene expression and function in in vitro-developing Schistosoma mansoni mother sporocysts: possible role in self-protection

Published online by Cambridge University Press:  20 April 2007

J. J. VERMEIRE*
Affiliation:
Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2115 Observatory Drive, Madison, WI 53706, USA
T. P. YOSHINO
Affiliation:
Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2115 Observatory Drive, Madison, WI 53706, USA
*
*Corresponding author: Present address: Program in International Child Health and Department of Pediatrics, Yale University School of Medicine, 464 Congress Avenue, New Haven, CT 06520-8081, USA. Tel: +1 203 737 4063. Fax: +1 203 737 3972. E-mail address: [email protected]

Summary

The ability of the larval forms of Schistosoma mansoni to invade and parasitize their molluscan host, Biomphalaria glabrata, is determined by a multitude of factors. In this study we sought to elucidate the possible mechanisms by which the invading larvae are able to counteract the potentially harmful oxidative environment presented by the host upon initial miracidial infection. This was attempted by examining the gene expression profile of parasite antioxidant enzymes of the linked glutathione-(GSH) thioredoxin (Trx) redox pathway during early intramolluscan larval development. Three such enzymes, the peroxiredoxins (Prx1, Prx2 and Prx3) were examined as to their activity and sites of expression within S. mansoni miracidia and in vitro-cultured mother sporocysts. Results of these studies demonstrated that the H2O2-reducing enzymes Prx1 and 2 are upregulated during early mother sporocyst development compared to miracidia. Immunolocalization studies further indicated that Prx1 and Prx2 proteins are expressed within the apical papillae of miracidia and tegumental syncytium of sporocysts, and are released with parasite excretory-secretory proteins (ESP) during in vitro larval transformation. Removal of Prx1 and Prx2 from larval ESP by immunoabsorption significantly reduced the ability of ESP to breakdown exogenous H2O2, thereby directly linking ESP Prx proteins with H2O2-scavenging activity. Moreover, exposure of live sporocysts to exogenous H2O2 stimulated an upregulation of Prx1 and 2 gene expression suggesting the involvement of H2O2–responsive elements in regulating larval Prx gene expression. These data provide evidence that Prx1 and Prx2 may function in the protection of S. mansoni sporocysts during the early stages of infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alger, H. M., Sayed, A. A., Stadecker, M. J. and Williams, D. L. (2002). Molecular and enzymatic characterisation of Schistosoma mansoni thioredoxin. International Journal for Parasitology 32, 12851292.CrossRefGoogle ScholarPubMed
Alger, H. M. and Williams, D. L. (2002). The disulfide redox system of Schistosoma mansoni and the importance of a multifunctional enzyme, thioredoxin glutathione reductase. Molecular and Biochemical Parasitology 121, 129139.CrossRefGoogle ScholarPubMed
Bayne, C. J., Buckley, P. M. and DeWan, P. C. (1980). Macrophage like hemocytes of resistant Biomphalaria glabrata are cytotoxic for sporocysts of Schistosoma mansoni in vitro. Journal of Parasitology 66, 413419.CrossRefGoogle Scholar
Bayne, C. J., Hahn, U. K. and Bender, R. C. (2001). Mechanisms of molluscan host resistance and of parasite strategies for survival. Parasitology 123, S159S167.CrossRefGoogle ScholarPubMed
Bender, R. C., Bixler, L. M., Lerner, J. P. and Bayne, C. J. (2002). Schistosoma mansoni sporocysts in culture: host plasma hemoglobin contributes to in vitro oxidative stress. Journal of Parasitology 88, 1418.CrossRefGoogle ScholarPubMed
Bender, R. C., Broderick, E. J., Goodall, C. P. and Bayne, C. J. (2005). Respiratory burst of Biomphalaria glabrata hemocytes: Schistosoma mansoni-resistant snails produce more extracellular H2O2 than susceptible snails. Journal of Parasitology 91, 275279.CrossRefGoogle ScholarPubMed
Bendtsen, J. D., Jensen, L. J., Blom, N., Von Heijne, G. and Brunak, S. (2004). Feature-based prediction of non-classical and leaderless protein secretion. Protein Engineering Design and Selection 17, 349356.CrossRefGoogle ScholarPubMed
Boyle, J. P., Wu, X. J., Shoemaker, C. B. and Yoshino, T. P. (2003). Using RNA interference to manipulate endogenous gene expression in Schistosoma mansoni sporocysts. Molecular and Biochemical Parasitology 128, 205215.CrossRefGoogle ScholarPubMed
Braschi, S., Curwen, R. S., Ashton, P. D., Verjovski-Almeida, S. and Wilson, A. (2006). The tegumental surface membranes of the human blood parasite Schistosoma mansoni: A proteomic analysis after differential extraction. Proteomics 6, 14711482.CrossRefGoogle Scholar
Chernin, E. (1963). Observations on hearts explanted in vitro from the snail Australorbis glabratus. Journal of Parasitology 49, 353364.CrossRefGoogle ScholarPubMed
Cleves, A. E. and Kelly, R. B. (1996). Rehearsing the ABCs. Protein translocation. Current Biology 6, 276278.CrossRefGoogle ScholarPubMed
Connors, V. A. and Yoshino, T. P. (1990). In vitro effect of larval Schistosoma mansoni excretory-secretory products on phagocytosis-stimulated superoxide production in hemocytes from Biomphalaria glabrata. Journal of Parasitology 76, 895902.CrossRefGoogle ScholarPubMed
Dunn, T. S. and Yoshino, T. P. (1988). Schistosoma mansoni: origin and expression of a tegumental surface antigen on the miracidium and primary sporocyst. Experimental Parasitology 67, 167181.CrossRefGoogle ScholarPubMed
Hahn, U. K., Bender, R. C. and Bayne, C. J. (2001 a). Killing of Schistosoma mansoni sporocysts by hemocytes from resistant Biomphalaria glabrata: role of reactive oxygen species. Journal of Parasitology 87, 292299.CrossRefGoogle ScholarPubMed
Hahn, U. K., Bender, R. C. and Bayne, C. J. (2001 b). Involvement of nitric oxide in killing of Schistosoma mansoni sporocysts by hemocytes from resistant Biomphalaria glabrata. Journal of Parasitology 87, 778785.CrossRefGoogle ScholarPubMed
Jefferies, J. R., Turner, R. J. and Barrett, J. (1997). Effect of Fasciola hepatica excretory-secretory products on the metabolic burst of sheep and human neutrophils. International Journal for Parasitology 27, 10251029.CrossRefGoogle ScholarPubMed
Jefferies, J. R., Campbell, A. M., van Rossum, A. J., Barrett, J. and Brophy, P. M. (2001). Proteomic analysis of Fasciola hepatica excretory-secretory products. Proteomics 1, 11281132.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Knudsen, G. M., Medzihradszky, K. F., Lim, K. C., Hansell, E. and McKerrow, J. H. (2005). Proteomic analysis of Schistosoma mansoni cercarial secretions. Molecular and Cellular Proteomics 4, 18621875.CrossRefGoogle ScholarPubMed
Kumagai, T., Osada, Y. and Kanazawa, T. (2006). 2-Cys peroxiredoxins from Schistosoma japonicum: the expression profile and localization in the life cycle. Molecular and Biochemical Parasitology 149, 135143.CrossRefGoogle ScholarPubMed
Kwatia, M. A., Botkin, D. J. and Williams, D. L. (2000). Molecular and enzymatic characterization of Schistosoma mansoni thioredoxin peroxidase. Journal of Parasitology 86, 908915.CrossRefGoogle ScholarPubMed
Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25, 402408.CrossRefGoogle Scholar
Loker, E. S., Bayne, C. J., Buckley, P. M. and Kruse, K. T. (1982). Ultrastructure of encapsulation of Schistosoma mansoni mother sporocysts by hemocytes of juveniles of the 10-R2 strain of Biomphalaria glabrata. Journal of Parasitology 68, 8494.CrossRefGoogle ScholarPubMed
McGonigle, S., Dalton, J. P. and James, E. R. (1997). Cloning of peroxiredoxin, a novel antioxidant enzyme, from the helminth parasite Fasciola hepatica. Parasitology 115, 101104.CrossRefGoogle ScholarPubMed
Mei, H. and LoVerde, P. T. (1997). Schistosoma mansoni: the developmental regulation and immunolocalization of antioxidant enzymes. Experimental Parasitology 86, 6778.CrossRefGoogle ScholarPubMed
Mkoji, G. M., Smith, J. M. and Prichard, R. K. (1988). Antioxidant systems in Schistosoma mansoni: correlation between susceptibility to oxidant killing and the levels of scavengers of hydrogen peroxide and oxygen free radicals. International Journal for Parasitology 18, 661666.CrossRefGoogle ScholarPubMed
Nare, B., Smith, J. M. and Prichard, R. K. (1990). Schistosoma mansoni: levels of antioxidants and resistance to oxidants increase during development. Experimental Parasitology 70, 389397.CrossRefGoogle ScholarPubMed
Nickel, W. (2005). Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6, 607614.CrossRefGoogle ScholarPubMed
Pan, C. T. (1980). The fine structure of the miracidium of Schistosoma mansoni. Journal of Invertebrate Pathology 36, 307372.CrossRefGoogle ScholarPubMed
Rubartelli, A. and Sitia, R. (1991). Interleukin 1 beta and thioredoxin are secreted through a novel pathway of secretion. Biochemical Society Transactions 19, 255259.CrossRefGoogle ScholarPubMed
Rubartelli, A., Bajetto, A., Allavena, G., Wollman, E. and Sitia, R. (1992). Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. Journal of Biological Chemistry 267, 2416124164.CrossRefGoogle ScholarPubMed
Salinas, G., Selkirk, M. E., Chalar, C., Maizels, R. M. and Fernandez, C. (2004). Linked thioredoxin-glutathione systems in platyhelminths. Trends in Parasitology 20, 340346.CrossRefGoogle ScholarPubMed
Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd Edn, Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
Sayed, A. A. and Williams, D. L. (2004). Biochemical characterization of 2-Cys peroxiredoxins from Schistosoma mansoni. Journal of Biological Chemistry 279, 2615926166.CrossRefGoogle ScholarPubMed
Sayed, A. A., Cook, S. K. and Williams, D. L. (2006). Redox balance mechanisms in Schistosoma mansoni rely on peroxiredoxins and albumin and implicate peroxiredoxins as novel drug targets. Journal of Biological Chemistry 281, 1700117010.CrossRefGoogle ScholarPubMed
Skelly, P. J. and Shoemaker, C. B. (2000). Induction cues for tegument formation during the transformation of Schistosoma mansoni cercariae. International Journal for Parasitology 30, 625631.CrossRefGoogle ScholarPubMed
Skelly, P. J. and Shoemaker, C. B. (2001). The Schistosoma mansoni host-interactive tegument forms from vesicle eruptions of a cyton network. Parasitology 122, 6773.CrossRefGoogle ScholarPubMed
Skelly, P. J. and Wilson, A. R. (2006). Making sense of the schistosome surface. Advances in Parasitology 63, 185284.CrossRefGoogle ScholarPubMed
Stahl, P. D. and Barbieri, M. A. (2002). Multivesicular bodies and multivesicular endosomes: the “ins and outs” of endosomal traffic. Science Signal Transduction Knowledge Environment 141, PE32.Google Scholar
Sullivan, J. T. and Richards, C. S. (1981). Schistosoma mansoni: NIH-SM-PR-2 strain, in susceptible and nonsusceptible stocks of Biomphalaria glabrata: comparative histology. Journal of Parasitology 67, 702708.CrossRefGoogle ScholarPubMed
Toledano, M. B., Delaunay, A., Monceau, L. and Tacnet, F. (2004). Microbial H2O2 sensors as archetypical redox signaling modules. Trends in Biochemical Science 29, 351357.CrossRefGoogle ScholarPubMed
van Balkom, B. W., van Gestel, R. A., Brouwers, J. F., Krijgsveld, J., Tielens, A. G., Heck, A. J. and van Hellemond, J. J. (2005). Mass spectrometric analysis of the Schistosoma mansoni tegumental sub-proteome. Journal of Proteomic Research 4, 958966.CrossRefGoogle ScholarPubMed
Vermeire, J. J., Taft, A. S., Hoffmann, K. F., Fitzpatrick, J. M. and Yoshino, T. P. (2006). Schistosoma mansoni: DNA microarray gene expression profiling during the miracidium-to-mother sporocyst transformation. Molecular and Biochemical Parasitology 147, 3947.CrossRefGoogle ScholarPubMed
Williams, D. L., Asahi, H., Botkin, D. J. and Stadecker, M. J. (2001). Schistosome infection stimulates host CD4(+) T helper cell and B-cell responses against a novel egg antigen, thioredoxin peroxidase. Infection and Immunity 69, 11341141.CrossRefGoogle ScholarPubMed
Yoshino, T. P. and Laursen, J. R. (1995). Production of Schistosoma mansoni daughter sporocysts from mother sporocysts maintained in synxenic culture with Biomphalaria glabrata embryonic (Bge) cells. Journal of Parasitology 81, 714–22.CrossRefGoogle ScholarPubMed
Zelck, U. E. and Janowsky, B. (2004). Antioxidant enzymes in intramolluscan Schistosoma mansoni and ROS-induced changes in expression. Parasitology 128, 493501.CrossRefGoogle ScholarPubMed