Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T00:37:56.209Z Has data issue: false hasContentIssue false

Antigens of parasitic helminths in diagnosis, protection and pathology

Published online by Cambridge University Press:  06 April 2009

R. M. E. Parkhouse
Affiliation:
National Institute for Medical Research, Mill Hill, London NW7 1AA
L. J. S. Harrison
Affiliation:
University of Edinburgh, Department of Tropical Animal Health, Centre for Tropical Veterinary Medicine, Easterbush, Roslin, Midlothian

Summary

A thorough study of parasitic helminth antigens is a pre-requisite for control programmes based on accurate immunochemical diagnosis, protection by vaccination and perhaps immune modulation to diminish pathological sequelae. Studies should be directed at the identification of those stage- or age-specific surface, secreted and somatic antigens which are involved in the host-parasite interactions responsible for immunity and/or pathology. Current methods of diagnosis of parasitic infections often fail to detect low-level patent infections, which incurs the risk of having a reservoir capable of perpetuating infections. There is, then, an urgent requirement for accurate immunochemical diagnosis, to be used in association with, and for the evaluation of, drug treatment and vector elimination, in parasite control programmes. Given the high sensitivity of current immunoassay technology, the only bar to establishing the necessary immunological tests is the choice of suitably specific antigen/antibody systems. Assays designed to detect parasite products or antigens are a major priority, as they indicate current infection, whereas those which detect antibody only indicate exposure to infection, which may or may not be current. Surface and secreted antigens are the most likely targets for protective immune responses and thus form a logical focus for vaccine design. The cestodes, which present such strong evidence for immunity following natural infection, are likely to yield effective vaccines by modern procedures. Certain antigens must, however, stimulate the humoral and/or cellular responses which are responsible for the undesirable immunopathological consequences of many helminthic diseases. The nematodes and trematodes furnish some extreme examples of such pathology. The ultimate objective in identifying these particular antigens is to utilize them in the appropriate down-regulation of the immune response responsible for such pathology. As an illustration, we have presented an interesting correlation between one particular clinical condition of onchocerciasis (Sowda) and the serological response, defined both in terms of the parasite antigens and an immunoglobulin class-restricted antibody response. Finally, the complexity of these parasite systems and the host response to the parasite should not be underestimated. Modern analytical techniques allow their detailed analysis in terms of the humoral antibody responses and afford the possibility of the future development of control and disease management procedures tailored to each individual host-parasite system. However, novel systems are required to complete the analysis of the cellular components of the immune response to parasite antigens, and functional studies are needed to determine the role that these parasite antigens play in the complex interaction between parasite and host.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aarons, B. J. (1979). Modern surgical treatment of human hydatidosis. Australian Veterinary Journal 55, 146–8.CrossRefGoogle Scholar
Almond, N. M. & Parkhouse, R. M. E. (1985). Nematode antigens. Current Topics in Microbiology and Immunology 120, 173203.Google ScholarPubMed
Almond, N. M. & Parkhouse, R. M. E. (1986 a). Immunoglobulin class specific responses to biochemically-defined antigens of Trichinella spiralis. Parasite Immunology 8, 391406.CrossRefGoogle ScholarPubMed
Almond, N. M. & Parkhouse, R. M. E. (1986 b). The Ig class distribution of anti-phosphoryl choline responses in mice infected with parasitic nematodes. Immunology 59, 633–5.Google ScholarPubMed
Almond, N. M. & Parkhouse, R. M. E. (1989). The importance of antibody class in helminth infections. In Progress in Vaccinology (ed. Talwer, G. P.). pp. 261–76. Berlin: Springer-Verlag.Google Scholar
Almond, N. M., McLaren, D. J. & Parkhouse, R. M. E. (1986 a). Comparison of the surface and secretions of T. pseudospiralis and T. spiralis. Parasitology 93, 163–76.CrossRefGoogle ScholarPubMed
Almond, N. M., Parkhouse, R. M. E., Chapa, Ruiz M. R. & Garcia, ortigosab E. (1986 b). The response of humans to surface and secreted antigens of Trichinella spiralis. Tropical Medicine and Parasitology 37, 381–4.Google ScholarPubMed
Almond, N. M., Worms, M. J., Harnett, W. & Parkhouse, R. M. E. (1987). Variations in specific humoral immune responses of different mouse strains to microfilariae of Dipetalonema viteae. Parasitology 95, 559–68.CrossRefGoogle ScholarPubMed
Ambler, J., Croft, A. R., Doe, J. E., Gemmel, D. K., Miller, J. N. & Orr, T. S. C. (1973). Biological techniques for studying the allergenic components of nematodes. II. The characterisation of the allergen released by Ascaris suum maintained in mice. Journal of Immunological Methods 2, 315–23.CrossRefGoogle Scholar
Bartlett, A., Turk, J., Ngu, N. L., Mackenzie, C. D., Fuglsang, H. & Anderson, J. (1978). Variation in delayed hypersensitivity in onchocerciasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 72, 372–7.CrossRefGoogle ScholarPubMed
Brattig, N. W., Tischendorf, F. W., Reifegerste, R., Albiez, A. J. & Berger, J. (1986). Differences in the distribution of HLA antigens in localised and generalised form onchocerciasis. Tropenmedizin and Parasitologic 37, 271–5.Google ScholarPubMed
Brattig, N. W., Tischendorf, F. W., Reifegerste, R., Albiez, A. J. & Berger, J. (1987). Distribution pattern of peripheral lymphocyte subsets in localised and generalised onchocerciasis. Clinical Immunology and Immunopathology 44, 149–59.CrossRefGoogle ScholarPubMed
Buijs, J. & Ruitenberg, E. J. (1987). Immunopathology of intestinal nematode infections. Baillière's Clinical and Tropical Medicine and Communicable Diseases 2, 535–51.Google Scholar
Buttner, D. W., Von Laer, G., Mannweiller, E. & Buttner, M. (1982). Clinical parasitological and serological studies on onchocerciasis in the Yemen Arab Republic. Tropenmedizin und Parasitologic 33, 201–12.Google ScholarPubMed
Cabrera, Z., Buttner, D. W. & Parkhouse, R. M. E. (1988). Unique recognition of a low molecular weight Onchocerca volvulus antigen by IgG3 antibodies in chronic hyper-reactive oncho-dermatitis (Sowda). Clinical and Experimental Immunology. (In the Press).Google ScholarPubMed
Cabrera, Z. & Parkhouse, R. M. E. (1987). Isolation of an antigenic fraction for diagnosis of onchocerciasis. Parasite Immunology 9, 3948.CrossRefGoogle ScholarPubMed
Cabrera, Z., Parkhouse, R. M. E., Forsyth, K., Gomez, Priego A., Pabon, R. & Yarzabal, L. (1989). Specific detection of human antibodies to Onchocerca volvulus. Tropenmedizin und Parasitologic (In the Press).Google Scholar
Capron, M. & Capron, A. (1986). Rats, mice and men-models for immune effector mechanisms against schistosomiasis. Parasitology Today 2, 6975.CrossRefGoogle ScholarPubMed
Capron, A., Dessaint, J. P., Capron, M., Joseph, M., Ameisen, J. C. & Tonnel, A. B. (1986). From parasites to allergy: a second receptor for IgE. Immunology Today 7, 1518.CrossRefGoogle ScholarPubMed
Capron, A., Dessaint, J. P., Haque, A. & Capron, M. (1982). Antibody-dependent cell-mediated cytotoxicity against parasites. Progress in Allergy 31, 234–67.Google ScholarPubMed
Ciba Foundation Symposium (1987). Filariasis. Vol. 127. London: John Wiley & Sons.Google Scholar
Correa, D., Sandoval, M. A., Harrison, L. J. S., Parkhouse, R. M. E., Plancarte, A., Meza-Lucas, A. & Flisser, A. (1989). Human neurocystercercosis: comparison of monoclonal and polyclonal EIA capture assays for the detection of parasite products in cerebrospinal fluid. Transactions of the Royal Society of Tropical Medicine and Hygiene, (in the Press).CrossRefGoogle Scholar
Crompton, D. W. T. (1987). Human helminthic populations. Bailliére's Clinical Tropical Medicine and Communicable Diseases 2, 489510.Google Scholar
Dell, R., Klinkert, M. Q., Beck, E., Shi, Y., Idris, M. A. & Ruppel, A. (1988). Immunodiagnosis of schistosomiasis with defined antigens. (Abstract). In XIIth International Congress for Tropical Medicine and Malaria (ed. Kager, P. A. & Polderman, A. M.) Excerpta Medica International Congress Series 810, pp. 58.Google Scholar
Finkelman, F. D., Katona, I. M., Urban, J. F., Snapper, C. M., Ohara, J. & Paul, W. E. (1986). Suppression of in vivo polyclonal IgE responses by monoclonal antibody to the lymphokine B-cell stimulatory factor 1. Proceedings of the National Academy of Sciences, USA 83, 9675–8.CrossRefGoogle Scholar
Forsyth, K. P., Spark, R., Kazura, J., Brown, G. V., Peters, P., Heywood, P., Dissanayake, S. & Mitchell, G. F.(1985). A monoclonal antibody-based immunoradiometric assay for detection of circulating antigen in bancroftian filariasis. Journal of Immunology 134, 1172–7.CrossRefGoogle ScholarPubMed
Gallie, G. J. & Sewell, M. M. H. (1972). The survival of Cysticercus bovis in resistant calves. Veterinary Record 91, 481–2.CrossRefGoogle ScholarPubMed
Gallie, G. J. & Sewell, M. M. H. (1974). The serological response of three month old calves to infection with Taenia saginata (Cysticercus bovis) and their resistance to reinfection. Tropical Animal Health and Production 6, 163–71.CrossRefGoogle Scholar
Gallie, G. J. & Sewell, M. M. H. (1976). Experimental immunisation of six month old calves against infection with the cysticercus stage of Taenia saginata. Tropical Animal Health and Production 8, 233–42.Google ScholarPubMed
Gallie, G. J. & Sewell, M. M. H. (1981). Inoculation of calves and adult cattle with oncospheres of Taenia saginata and their resistance to reinfection. Tropical Animal Health and Production 13, 147–54.CrossRefGoogle Scholar
Gamble, H. R. (1985). Trichinella spiralis: immunization of mice using monoclonal antibody affinity isolated antigens. Experimental Parasitology 59, 398404.CrossRefGoogle ScholarPubMed
Gibbons, J. C., Harrison, L. J. S. & Parkhouse, R. M. E. (1986). Immunoglobulin class responses to Taenia taeniaeformis in susceptible and resistant mice. Parasite Immunology 8, 491502.CrossRefGoogle Scholar
Gibson, D. W., Connor, D. H., Brown, H. L., Fuglsang, H., Anderson, J., Duke, B. O. L. & Buck, A. A. (1976). Onchoeercal dermatitis: ultrastructural studies of microfilarial and host tissue, before and after treatment with diethylcarbamazine (Hetrazan). American Journal of Tropical Medicine and Hygiene 25, 7487.CrossRefGoogle Scholar
Greene, B. M., Fanning, M. M. & Ellner, J. J. (1983). Non-specific suppression of antigen-induced lymphocyte blastogenesis in Onchocerca volvulus infection in man. Clinical and Experimental Immunology 52, 259–65.Google ScholarPubMed
Grzych, J. M., Capron, M., Dissous, C. & Capron, A. (1984). Blocking activity of rat monoclonal antibodies in experimental schistosomiasis. Journal of Immunology 133, 9981004.CrossRefGoogle ScholarPubMed
Harrison, L. J. S. & Joshua, G. W. P. (1986). Immunoprophylaxis of T. saginata cysticercosis. In Helminth Zoonoses (ed. Geerts, S., Kumar, V. & Brandt, J.) pp. 8184. The Hague: Martinus Nijhoff.Google Scholar
Harrison, L. J. S. & Parkhouse, R. M. E. (1985). Antigens of Taeniid cestodes in protection, diagnosis and escape. Current Topics in Microbiology and Immunology 120, 159–72.Google ScholarPubMed
Harrison, L. J. S. & Parkhouse, R. M. E. (1986 a). Passive protection against Taenia saginata infection in cattle by a mouse monoclonal antibody reactive with the surface of the invasive oncosphere. Parasite Immunology 8, 319–32.CrossRefGoogle ScholarPubMed
Harrison, L. J. S. & Parkhouse, R. M. E. (1986 b). Identification of protective antigens in Taenia saginata cysticercosis. Immunobiology and Molecular Biology of Cestode Infections, Cooper's Animal Health Symposium, Melbourne, A2.Google Scholar
Harrison, L. J. S., Parkhouse, R. M. E. & Sewell, M. M. H. (1984). Variation in ‘target’ antigen between appropriate and inappropriate hosts of T. saginata metacestodes. Parasitology 88, 659–63.CrossRefGoogle ScholarPubMed
Harrison, L. J. S., Joshua, G. W. P., Wright, S. H. & Parkhouse, R. M. E. (1989). Specific detection of circulating surface/secreted glycoproteins of viablecysticerci in Taenia saginata cysticercosis. Parasite Immunology 11, 351–70.CrossRefGoogle ScholarPubMed
Holmes, P. H. (1986). Pathophysiology of nematode infections. Parasitology – Quo Vadit? Proceedings of the Sixth International Congress of Parasitology, (ed. Howell, M. J.) pp. 443451. Australian Academy of Science.Google Scholar
Hughes, D. L. (1985). Trematodes, excluding schistosomes with special emphasis on Fasciola. Current Topics in Microbiology and Immunology 120, 241–60.Google ScholarPubMed
Hussain, R., Groge, M. & Ottesen, E. (1987). IgG antibody subclasses in human filariasis. Differential subclass recognition of parasite antigens correlates with different clinical manifestations of infection. Journal of Immunology 139, 2794–8.CrossRefGoogle ScholarPubMed
Jarrett, E. E. & Miller, H. R. (1982). Production and activities of IgE in helminth infection. Progress in Allergy 31, 178233.Google ScholarPubMed
Jassim, A., Hassam, K. & Catty, D. (1987). Antibody isotypes in human schistosomiasis mansoni. Parasite Immunology 9, 627–50.CrossRefGoogle ScholarPubMed
De Jonge, N. & Deelder, A. M. (1988). Immunodiagnosis of schistosomiasis by ELISA for the detection of circulating anodic antigen using monoclonal antibodies (Abstract). In XIIth International Congress for Tropical Medicine and Malaria (ed. Kager, P. A. and Polderman, A. M.). Excerpta Medica International Congress Series 810, pp. 93.Google Scholar
Joshua, G. W. P., Harrison, L. J. S. & Sewell, M. M. H. (1989). Excreted/secreted products of developing Taenia saginata metacestodes. Parasitology 97, 477–87.CrossRefGoogle Scholar
Jungery, M. & Ogilvie, B. M. (1982). Antibody response to stage specific Trichinella spiralis surface antigens in strong and weak responder mouse strains. Journal of Immunology 129, 839–43.CrossRefGoogle ScholarPubMed
Kennedy, M. W., Gordon, A. M. S., Tomlinson, L. A. & Qureshi, F. (1986). Genetic (major histocompatibility complex?) control of the antibody repertoire to the secreted antigens of Ascaris. Parasite Immunology 9, 269–73.CrossRefGoogle Scholar
Lawson, J. R. & Gemmel, M. A. (1984). Hydatidosis and cysticercosis. Advances in Parasitology 22, 261–96.CrossRefGoogle Scholar
Leid, R. W. (1988). Parasites and complement. Advances in Parasitology 27, 131–68.CrossRefGoogle ScholarPubMed
Letonja, T. & Hammerberg, C. (1987 a). Taenia taeniaeformis: early inflammatory response around developing metacestodes in the liver of resistant and susceptible mice. I. Identification of leucocyte response with monoclonal antibodies. Journal of Parasitology 73, 962–70.CrossRefGoogle ScholarPubMed
Letonja, T. & Hammerberg, C. (1987 b). Taenia taeniaeformis: early inflammatory response around developing metacestodes in the liver of resistant and susceptible mice. II. Histochemistry and cytochemistry. Journal of Parasitology 73, 971–9.CrossRefGoogle ScholarPubMed
Lightowlers, M. W. & Rickard, M. D. (1988). Excretory-secretory products of helminth parasites: effects on host immune responses. Parasitology 96, S123–S166.CrossRefGoogle ScholarPubMed
Lloyd, S. (1979). Homologous and heterologous immunisation against the metacestodes of Taenia saginata and Taenia taeniaeformis in cattle and mice. Zeitschrift f¨r Parasitenkunde 60, 8796.CrossRefGoogle Scholar
Lloyd, S. (1984). Passive and active immunisation against cysticercosis. In Agriculture. Some Important Parasitic Infections in Bovines Considered from Economic and Social (Zoonosis) Points of View (ed. Euzeby, J. & Grevrey, J.) pp. 187198. EEC Publications.Google Scholar
Lloyd, S. & Soulsby, E. J. L. (1976). Passive transfer of immunity to neonatal calves against metacestodes of Taenia saginata. Veterinary Parasitology 2, 355–62.CrossRefGoogle Scholar
Lucius, R., Buttner, D. W., Kirsten, Ch. & Diesfeld, H. J. (1986). A study on antigen recognition by onchocerciasis patients with different clinical forms of disease. Parasitology 92, 569–80.CrossRefGoogle Scholar
Lucius, R., Erondu, N., Kern, A., Donelson, J. D. & Diesfeld, H. J. (1988). An Onchocerca-specific cloned polypeptide for immunodiagnosis of onchocerciasis (abstract). In XIIth International Congress for Tropical Medicine and Malaria (ed. Kager, P. A. and Polderman, A. M.). Excerpta Medica International Congress Series 810, pp. 63.Google Scholar
Macinnis, A. J. (1987). Molecular Paradigms for Eradicating Helminthic Parasites. UCLA Symposia on Molecular and Cellular Biology. New Series 60. New York: Alan R. Liss.Google Scholar
Mackenzie, C. D., Preston, P. M. & Ogilvie, B. M. (1978). Immunological properties of the surface of parasitic nematodes. Nature, London 276, 826–8.CrossRefGoogle ScholarPubMed
Mackenzie, C. D. & Williams, J. F. (1985). Variation in clinical presentation in onchocerciasis and their relationship to host-parasite interaction. Sudan Medical Journal, 21, 41–8.Google Scholar
McLaren, D. J., Ortega-Pierres, M. G. & Parkhouse, R. M. E. (1987). Trichinella spiralis: immunocytochemical localisation of surface and intracellular antigens using monoclonal antibody probes. Parasitology 94, 101–14.CrossRefGoogle ScholarPubMed
Mahmoud, A. A. F. (1987). Schistosomiasis. Baillière's Clinical and Tropical Medicine and Communicable Diseases 2, no. 2.Google Scholar
Maizels, R. M., Burke, J. & Denham, D. A. (1987). Phosphorylcholine bearing antigens in filarial nematode parasites: analysis of somatic extracts, in vitro secretions and infection sera from Brugia malayi and B. pahangi. Parasite Immunology 9, 4966.CrossRefGoogle ScholarPubMed
Maizels, R. M., Kennedy, M. W., Meghji, M., Robertson, B. D. & Smith, H. V. (1987). Shared carbohydrate epitopes on distinct surface and secreted antigens of the parasitic nematode Toxocara canis. Journal of Immunology 139, 207–14.CrossRefGoogle ScholarPubMed
Maizels, R. M. & Selkirk, M. E. (1988). Antigens of filarial parasites. ISI Atlas of Science, pp. 15.Google Scholar
Molinari, J. L., Meza, R., Suarez, B., Palacias, S., Tato, P. & Retano, A. (1983). Taenia solium: immunity in hogs to the cysticercus. Experimental Parasitology 5, 340–57.CrossRefGoogle Scholar
Molinari, J. L., Meza, R. & Tato, P. (1983). Taenia solium: cellular reactions in the larva (Cysticercus cellulosae) in naturally parasitized, immunized hogs. Experimental Parasitology 56, 327–38.CrossRefGoogle ScholarPubMed
Ortega-Pierres, M. G., Almond, N. W. & Parkhouse, R. M. E. (1987). Applications of biochemically defined antigens of Trichinella spiralis in host immunity, protection and diagnosis. Wiadomosci Parazytologiczne 33, 423–52.Google Scholar
Ortega-Pierres, M. G., Mackenzie, C. D. & Parkhouse, R. M. E. (1984). Protection against Trichinella spiralis induced by a monoclonal antibody that promotes killing of newborn larvae by granulocytes. Parasite Immunology 6, 275–84.CrossRefGoogle ScholarPubMed
Parkhouse, R. M. E. & Clark, N. W. T. (1983). Stage specific secreted and somatic antigens of Trichinella spiralis. Molecular and Biochemical Parasitology 9, 319–27.Google ScholarPubMed
Parkhouse, R. M. E. & Harrison, L. J. S. (1987). Cyst fluid and surface associated glycoprotein antigens of Taenia sp. metacestodes. Parasite Immunology 9, 263–8.CrossRefGoogle ScholarPubMed
Parkhouse, R. M. E. & Ortega-Pierres, M. G. (1984). Stage-specific antigens of Trichinella spiralis. Parasitology 88, 623–30.CrossRefGoogle ScholarPubMed
Parkhouse, R. M. E., Philipp, M. & Ogilvie, B. M. (1981). Characterization of surface antigens of Trichinella spiralis infective larvae. Parasite Immunology 3, 339–52.CrossRefGoogle ScholarPubMed
Pawlowski, Z. S. (1986). Intestinal helminthiasis and human health: recent advances and future needs. Parasitology - Quo Vadit ? Proceedings of the Sixth International Congress of Parasitology (ed. Howell, M. J.) pp. 159167. Australian Academy of Science.Google Scholar
Pawlowski, Z. S. (1987). Intestinal helminthic infections. Bailliére's Clinical and Tropical Medicine and Communicable Diseases 3, no. 2.Google Scholar
Pery, P., Petit, A., Poulain, J. & Luffau, G. (1974). Phosphorylcholine-bearing components in homogenates of nematodes. European Journal of Immunology 4, 637–9.CrossRefGoogle ScholarPubMed
Philipp, M., Parkhouse, R. M. E. & Ogilvie, B. M. (1980). Changing proteins on the surface of a parasitic nematode. Nature, London, 287, 538–40.CrossRefGoogle ScholarPubMed
Pritchard, D. I. (1987). The molecular biology of gastrointestinal nematodes. Bailliére's Clinical Tropical Medicine and Communicable Diseases 2, 511–34.Google Scholar
Rabiella-cervantes, M. T., Rivas-hernandez, A., Rodriguez-Ibarra, J., Castillo-Medina, S. & Cancino, F. De M. (1982). Anatomopathological aspects of human brain cysticercosis. In Cysticercosis: Present State of Knowledge and Perspectives (ed. Flisser, A.), pp. 179200. London: Academic Press.Google Scholar
Rickard, M. D. & Brumley, J. L. (1981). Immunisation of calves against Taenia saginata infection using antigens collected by in vitro incubation of Taenia saginata oncospheres or ultrasonic disintegration of T. saginata and T. hydatigena oncospheres. Research in Veterinary Science 30, 99103.CrossRefGoogle ScholarPubMed
Rickard, M. D. & Williams, J. F. (1983). Hydatidosis/cysticercosis: immune mechanisms and immunization against infection. Advances in Parasitology 21, 230–96.Google Scholar
Rodriguez, Del Rosal E., Correa, D. & Flisser, A. (1989). Swine cysticercosis: detection of parasite products in serum. Veterinary Record 124, 488.CrossRefGoogle Scholar
Rollinson, D. & Simpson, A. J. G. (1987). The Biology of Schistosomes. From Gene to Latrine. London: Academic Press.Google Scholar
Silberstein, D. S. & Despommier, D. D. (1984). Antigens from Trichinella spiralis that induce a protective response in the mouse. Journal of Immunology 132, 898904.CrossRefGoogle ScholarPubMed
Silberstein, D. S. & Despommier, D. D. (1985). Effects on Trichinella spiralis of host responses to purified antigens. Science 227, 948–50.CrossRefGoogle ScholarPubMed
Simpson, A. J. G. & Smithers, S. R. (1985). Schistosomes: surface, egg and circulating antigens. Current Topics in Microbiology and Immunology 120, 205–39.Google ScholarPubMed
Smith, D. B., da Verm, K. M., Board, P. G., Tiu, W., Garcia, E. G. & Mitchell, G. F. (1986). Mr 26000 antigen of Schistosoma japonicum recognized by resistant WEHI'129/J mice is a parasite glutathione-S-transferase. Proceedings of the National Academy of Sciences, USA 83, 8703–7.CrossRefGoogle Scholar
Smithers, S. R. & Doenhoff, M. J. (1982). Schistosomiasis. In Immunology of Parasitic Infections, 2nd Edn., (ed. Cohen, S. & Warren, K. S.) pp. 527607. Oxford: Blackwell Scientific Publications.Google Scholar
Soulsby, E. J. L. & Lloyd, S. (1982). Passive immunization in cysticercosis: characterization of the antibodies concerned. In Cysticercosis: Present State of Knowledge and Current Perspectives, pp. 539548. London: Academic Press.Google Scholar
Spiegelberg, H. L. (1984). Structure and function of Fc receptors for IgE on lymphocytes, monocytes and macrophages. Advances in Immunology 35, 6188.CrossRefGoogle ScholarPubMed
Stoll, N. R. (1947). This wormy world. Journal of Parasitology 33, 118.Google ScholarPubMed
Symons, L. E. A. (1985). Anorexia: occurrence, pathophysiology, and possible causes in parasitic infections. Advances in Parasitology 24, 103–33.CrossRefGoogle ScholarPubMed
Toy, L., Pettit, M., Wang, Y. F., Hedstrom, R. & McKerrow, J. H. (1987). The immune response to stage-specific proteolytic enzymes of Schistosoma mansoni. In Molecular Paradigms for Eradicating Helminthic Parasites. UCLA Symposia on Molecular and Cellular Biology, New Series 60, pp. 85103. Alan R. Liss.Google Scholar
Walls, K. W. & Schantz, P. M. (1986). Helminthic diseases. In Immunodiagnosis of Parasitic Diseases, Vol. 1. London and New York: Harcourt Brace Jovanovich, Academic Press.Google Scholar
Warren, K. S. (1978). The pathology, pathobiology and pathogenesis of schistosomiasis. Nature, London 273, 608–12.CrossRefGoogle ScholarPubMed
Warren, K. S. (1982). The secret of the immunopathogenesis of schistosomiasis: in vivo models. Immunological Reviews 61, 189213.CrossRefGoogle ScholarPubMed
Weiss, N., Hussain, R. & Ottesen, E. A. (1982). IgE antibodies are more specific than IgG antibodies in human onchocerciasis and lymphatic filariasis. Immunology 45, 129–37.Google ScholarPubMed
Weiss, N., Van Den Ende, M. C., Albiez, E. J., Barbiero, V. K., Forsyth, K. P. & Prince, A. M. (1985). Detection of serum antibodies and circulating antigens in a chimpanzee experimentally infected with Onchocerca volvulus. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 587–91.CrossRefGoogle Scholar
Williams, J. F. & Sandeman, M. R. (1982). Antigens of taeniid cestodes. In Cysticercosis: Present State of Knowledge and Perspectives (ed. Flisser, A.), pp. 525537. London: Academic Press.Google Scholar