Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T07:12:49.389Z Has data issue: false hasContentIssue false

A 78 kDa glucose-regulated protein gene of Spirometra erinacei plerocercoid induced by chemical and physiological stresses

Published online by Cambridge University Press:  18 November 2004

D.-H. YUN
Affiliation:
Department of Molecular Parasitology and Center for Molecular Medicine, Samsung Biomedical Research Institute and Sungkyunkwan University School of Medicine, Suwon 440-746, Korea Department of Parasitology, College of Medicine, Chung-Ang University, Seoul 156-756, Korea
Y.-A. BAE
Affiliation:
Department of Molecular Parasitology and Center for Molecular Medicine, Samsung Biomedical Research Institute and Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
J.-Y. CHUNG
Affiliation:
Department of Molecular Parasitology and Center for Molecular Medicine, Samsung Biomedical Research Institute and Sungkyunkwan University School of Medicine, Suwon 440-746, Korea PharmacoGenomics Research Center, Inje University, Busan 614-735, Korea
S.-Y. KANG
Affiliation:
Department of Parasitology, College of Medicine, Chung-Ang University, Seoul 156-756, Korea
I. KANG
Affiliation:
Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
W.-M. SOHN
Affiliation:
Department of Parasitology, College of Medicine, Gyeongsang National University, Jinju 660-751, Korea
S.-H. CHO
Affiliation:
Department of Parasitology, National Institute of Health, Seoul 122-701, Korea
T.-S. KIM
Affiliation:
Department of Parasitology, National Institute of Health, Seoul 122-701, Korea
S.-Y. CHO
Affiliation:
Department of Molecular Parasitology and Center for Molecular Medicine, Samsung Biomedical Research Institute and Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
Y. KONG
Affiliation:
Department of Molecular Parasitology and Center for Molecular Medicine, Samsung Biomedical Research Institute and Sungkyunkwan University School of Medicine, Suwon 440-746, Korea

Abstract

To adapt to different environmental conditions between poikilothermic and homeothermic hosts, the plerocercoid of Spirometra erinacei (sparganum) might express a variety of biologically active molecules. We have identified a 78 kDa glucose-regulated protein of the sparganum (SpGrp78) by differential display of mRNA, employing RNAs each from sparganum adjusted at 9 °C and 37 °C. A full-length cDNA of 2148 bp encodes for a protein of 651 amino acids with a predicted molecular mass of 71 610 Da and shares molecular characteristics with heat-shock protein 70, including a putative ATP binding site, signal peptide cleavage site and endoplasmic reticulum retention signal. Phylogenetic analysis revealed that SpGrp78 was mostly related to those of Echinococcus multilocularis and E. granulosus. Expression of SpGrp78 mRNA increased approximately 7-fold by inhibition of glycosylation by tunicamycin, 2-fold by temperature-shift from 9 °C to 37 °C and slightly by pH-shift to 4·0 or 5·5. These results suggested that induction of SpGrp78 mRNA is related to the functional role of SpGrp78 as a molecular chaperone when the parasite adapts to a new host environment.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AMORIM, A. G., CARRINGTON, M., MILES, M. A., BARKER, D. C. & DE ALMEIDA, M. L. ( 1996). Identification of the C-terminal region of 70 kDa heat shock protein from Leishmania (Viannia) braziliensis as a target for the humoral immune response. Cell Stress Chaperones 1, 177187.2.3.CO;2>CrossRefGoogle Scholar
BOHNE, W., WIRSING, A. & GROSS, U. ( 1997). Bradyzoite-specific gene expression in Toxoplasma gondii requires minimal genomic elements. Molecular and Biochemical Parasitology 85, 8998.CrossRefGoogle Scholar
BUCHNER, J. ( 1996). Supervising the fold: functional principles of molecular chaperones. FASEB Journal 10, 1019.CrossRefGoogle Scholar
BUKAU, B. & HORWICH, A. L. ( 1998). The Hsp70 and Hsp60 chaperone machines. Cell 92, 351366.CrossRefGoogle Scholar
CHANG, K. H., CHO, S. Y., CHI, J. G., KIM, W. S., HAN, M. C., KIM, C. W., MYUNG, H. & CHOI, K. S. ( 1987). Cerebral sparganosis: CT characteristics. Radiology 165, 505510.CrossRefGoogle Scholar
CHO, S. Y. ( 2003). Pseudophyllidean tapeworms: diphyllobothriasis and sparganosis. In Oxford Textbook of Medicine, 4th Edn ( ed. Warrell, D. A., Cox, T. M. & Firth, J. D.), pp. 828829. Oxford University Press, Oxford.
CHOMCZYNSKI, P. & SACCHI, N. ( 1987). Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162, 156159.CrossRefGoogle Scholar
CLEARY, M. D., SINGH, U., BLADER, I. J., BREWER, J. L. & BOOTHROYD, J. C. ( 2002). Toxoplasma gondii asexual development: identification of developmentally regulated genes and distinct patterns of gene expression. Eukaryotic Cell 1, 329340.CrossRefGoogle Scholar
DUKSIN, D. & MAHONEY, W. C. ( 1982). Relationship of the structure and biological activity of the natural homologues of tunicamycin. Journal of Biological Chemistry 257, 31053109.Google Scholar
FELSENSTEIN, J. ( 1997). PHYLIP version 3.5c. University of Washington, Seattle, WA, USA.
GARRED, P., NIELSEN, M. A., KURTZHALS, J. A., MALHOTRA, R., MADSEN, H. O., GOKA, B. Q., AKANMORI, B. D., SIM, R. B. & HVIID, L. ( 2003). Mannose-binding lectin is a disease modifier in clinical malaria and may function as opsonin for Plasmodium falciparum-infected erythrocytes. Infection and Immunity 71, 52455253.CrossRefGoogle Scholar
GRIJALVA, M. J., GOODRUM, K. J. & ROWLAND, E. C. ( 1999). Immunological characterization of antigens released by Trypanosoma cruzi-infected cells. Journal of Parasitology 85, 663671.CrossRefGoogle Scholar
HANNAN, L. A., NEWMYER, S. L. & SCHMID, S. L. ( 1998). ATP- and cytosol-dependent release of adaptor proteins from clathrin-coated vesicles: a dual role for Hsc70. Molecular Biology of the Cell 9, 22172229.CrossRefGoogle Scholar
HARTL, F. U. ( 1996). Molecular chaperones in cellular protein folding. Nature, London 381, 571579.CrossRefGoogle Scholar
KIM, D. G., PAEK, S. H., CHANG, K. H., WANG, K. C., JUNG, H. W., KIM, H. J., CHI, J. G. & HAN, D. H. ( 1996). Cerebral sparganosis: clinical manifestations, treatment, and outcome. Journal of Neurosurgery 85, 10661071.CrossRefGoogle Scholar
KITA, K., NIHEI, C. & TOMMITSUKA, E. ( 2003). Parasite mitochondria as drug target: diversity and dynamic changes during the life cycle. Current Medical Chemistry 10, 25352548.CrossRefGoogle Scholar
KRAUTZ, G. M., PETERSON, J. D., GODSEL, L. M., KRETTLI, A. U. & ENGMAN, D. M. ( 1998). Human antibody responses to Trypanosoma cruzi 70-kD heat-shock proteins. American Journal of Tropical Medicine and Hygiene 58, 137143.CrossRefGoogle Scholar
LEVY-HOLTZMAN, R. & SCHECHTER, I. ( 1996). Expression of different forms of the heat-shock factor during the life cycle of the parasitic helminth Schistosoma mansoni. Biochimica et Biophysica Acta 1317, 14.CrossRefGoogle Scholar
LUPAS, A., VAN DYKE, M. & STOCK, J. ( 1991). Predicting coiled coils from protein sequences. Science 252, 11621164.CrossRefGoogle Scholar
MORI, K., OGAWA, N., KAWAHARA, T., YANAGI, H. & YURA, Y. ( 1998). Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae. Journal of Biological Chemistry 273, 99129920.CrossRefGoogle Scholar
MOSELEY, P. L. ( 1997). Heat shock proteins and heat adaptation of the whole organism. Journal of Applied Physiology 83, 14131417.CrossRefGoogle Scholar
MUHLSCHLEGEL, F., FROSCH, P., CASTRO, A., APFEL, H., MULLER, A. & FROSCH, M. ( 1995). Molecular cloning and characterization of an Echinococcus multilocularis and Echinococcus granulosus stress protein homologous to the mammalian 78 kDa glucose regulated protein. Molecular and Biochemical Parasitology 74, 245250.CrossRefGoogle Scholar
NEUMANN, S., ZIV, E., LANTNER, F. & SCHECHTER, I. ( 1993). Regulation of HSP70 gene expression during the life cycle of the parasitic helminth Schistosoma mansoni. European Journal of Biochemistry 212, 589596.CrossRefGoogle Scholar
PAGE, R. D. ( 1996). Tree view: an application to display phylogenetic trees on personal computers. Computerized Applied Biosciences 12, 357358.CrossRefGoogle Scholar
PEREIRA, C. A., ALONSO, G. D., IVALDI, S., SILBER, A. M., ALVES, M. J., TORRES, H. N. & FLAWIA, M. M. ( 2003). Arginine kinase overexpression improves Trypanosoma cruzi survival capability. FEBS Letter 554, 201205.CrossRefGoogle Scholar
SAMBROOK, J., RUSSELL, D. W. & SAMBROOK, J. ( 2001). Molecular Cloning: A Laboratory Manual, 3rd Edn. Cold Spring Harbor Laboratory Press, New York, USA.
SKEIKY, Y. A., BENSON, D. R., GUDERIAN, J. A., WHITTLE, J. A., BACELAR, O., CARVALHO, E. M. & REED, S. G. ( 1995). Immune responses of leishmaniasis patients to heat shock proteins of Leishmania species and humans. Infection and Immunity 63, 41054114.Google Scholar
SOHN, W. M., HONG, S. T., CHAI, J. Y. & LEE, S. H. ( 1993). Infectivity of the sparganum treated by praziquantel, gamma-irradiation and mechanical cutting. Korean Journal of Parasitology 31, 135139.CrossRefGoogle Scholar
THOMPSON, J. D., HIGGINS, D. G. & GIBSON, T. J. ( 1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle Scholar
TIBBETTS, R. S., KIM, I. Y., OLSON, C. L., BARTHEL, L. M., SULLIVAN, M. A., WINQUIST, A. G., MILLER, S. D. & ENGMAN, D. M. ( 1994). Molecular cloning and characterization of the 78-kilodalton glucose-regulated protein of Trypanosoma cruzi. Infection and Immunity 62, 24992507.Google Scholar
VAYSSIER, M., LE GUERHIER, F., FABIEN, J. F., PHILIPPE, H., VALLET, C., ORTEGA-PIERRES, G., SOULE, C., PERRET, C., LIU, M., VEGA-LOPEZ, M. & BOIREAU, P. ( 1999). Cloning and analysis of a Trichinella britovi gene encoding a cytoplasmic heat shock protein of 72 kDa. Parasitology 119, 8193.CrossRefGoogle Scholar
VON HEIJNE, G. ( 1986). A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14, 46834690.CrossRefGoogle Scholar
WEISS, L. M., MA, Y. F., TAKVORIAN, P. M., TANOWITZ, H. B. & WITTNER, M. ( 1998). Bradyzoite development in Toxoplasma gondii and the hsp70 stress response. Infection and Immunity 66, 32953302.Google Scholar