Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T05:33:29.488Z Has data issue: false hasContentIssue false

9-O-acetylated sialic acids enhance entry of virulent Leishmania donovani promastigotes into macrophages

Published online by Cambridge University Press:  15 December 2008

A. GHOSHAL
Affiliation:
Infectious disease and Immunology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata700 032, India
S. MUKHOPADHYAY
Affiliation:
Infectious disease and Immunology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata700 032, India
A. K. CHAVA
Affiliation:
Infectious disease and Immunology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata700 032, India
G. J. GERWIG
Affiliation:
Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, Padualaan 8, NL-3584CHUtrecht, The Netherlands
J. P. KAMERLING
Affiliation:
Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, Padualaan 8, NL-3584CHUtrecht, The Netherlands
M. CHATTERJEE
Affiliation:
Department of Pharmacology, Institute of Postgraduate Medical Education & Research, 244B A.J.C. Bose Road, Kolkata, 700 020, India
C. MANDAL*
Affiliation:
Infectious disease and Immunology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata700 032, India
*
*Corresponding author: Infectious disease and Immunology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata -700 032, India. Tel: 91 33 2429 8861. Fax: 91 33 2473 5197 or 91 33 2473 0284. E-mail: [email protected] or [email protected]

Summary

Distribution of 9-O-acetylated sialic acids (9-O-AcSA) on Leishmania donovani has been previously reported. Considering their role in recognition, the differential distribution of sialic acids especially 9-O-acetylated sialic acids in avirulent (UR6) versus virulent (AG83 and GE1) promastigotes of Leishmania donovani and its role in entry into macrophages was explored. Fluorimetric-HPLC, fluorimetric determination and ELISA revealed 14-, 8- and 5-fold lower sialic acids in UR6 as compared to AG83. Interestingly, on UR6, flow cytometry indicated lower (α2→6)-linked sialoglycoproteins along with minimal 9-O-acetylated sialoglycoproteins by Scatchard analysis. Further, UR6 demonstrated a 9- and 14·5-fold lower infectivity and phagocytic index than AG83. Additionally, de-O-acetylation and de-sialylation of AG83 demonstrated a 3- and 1·5-fold reduced phagocytic index. The role of 9-O-AcSA in entry was further confirmed by pre-blocking the macrophage surface with a cocktail of sugars followed by microscopic quantification. The phagocytic index of AG83 exclusively through 9-O-AcSA was significantly high. Interestingly, AG83 produced higher metacyclic promastigotes containing increased 9-O-AcSA as compared to avirulent UR6 supporting its virulent nature. Taken together; our results conclusively demonstrate the increased presence of 9-O-acetylated sialic acid on promastigotes of virulent Leishmania donovani as compared to avirulent UR6 and their subsequent role in entry within macrophages.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bandyopadhyay, S. M. and Mandal, C. (2008). Targeting glycoproteins or glycolipids and their metabolic pathways for antiparasite therapy. Advances in Experimental Medicine and Biology 625, 87102.CrossRefGoogle ScholarPubMed
Bishayi, B. and Samanta, A. K. (1996). Identification and characterization of specific receptor for interleukin-8 from the surface of human monocytes. Scandanavian Journal of Immunology 43, 531536. doi:10.1046/j.1365-3083.1996.d01-69.x.CrossRefGoogle ScholarPubMed
Chatterjee, M., Sharma, V., Mandal, C., Sundar, S. and Sen, S. (1998). Identification of antibodies directed against O-acetylated sialic acids in visceral leishmaniasis: its diagnostic and prognostic role. Glycoconjugate Journal 15, 11411147. doi:10.1023/A:1006963806318.Google ScholarPubMed
Chatterjee, M., Chava, A. K., Kohla, G., Pal, S., Merling, A., Hinderlich, S., Unger, U., Strasser, P., Gerwig, G. J., Kamerling, J. P., Vlasak, R., Crocker, P. R., Schauer, R., Schwartz-Albiez, R. and Mandal, C. (2003). Identification and characterization of adsorbed serum sialoglycans on Leishmania donovani promastigotes. Glycobiology 13, 351361. doi:10.1093/glycob/cwg027.CrossRefGoogle ScholarPubMed
Chakrabarty, R., Mukherjee, S., Lu, H. G., McGwire, B. S., Chang, K. P. and Basu, M. K. (1996). Kinetics of entry of virulent and avirulent strains of Leishmania donovani into macrophages: a possible role of virulence molecules (gp63 and LPG). Journal of Parasitology 82, 632635. doi:10.2307/3283790.CrossRefGoogle ScholarPubMed
Chakrabarty, R., Chakrabarty, P. and Basu, M. K. (1998). Macrophage mannosyl fucosyl receptor: its role in invasion of virulent and avirulent L. donovani promastigotes. Bioscience Reports 18, 129–42.CrossRefGoogle Scholar
Chava, A. K., Bandyopadhyay, S., Chatterjee, M. and Mandal, C. (2004 a). Sialoglycans in protozoal diseases: their detection, modes of acquisition and emerging biological roles. Glycoconjugate Journal 20, 199206. doi:10.1023/B:GLYC.0000024251.30100.08.CrossRefGoogle ScholarPubMed
Chava, A. K., Chatterjee, M., Gerwig, G. J., Kamerling, J. P. and Mandal, C. (2004 b). Identification of sialic acids on Leishmania donovani amastigotes. Biological Chemistry 385, 5966. doi:10.1515/BC.2004.008.CrossRefGoogle ScholarPubMed
Coligan, E. J., Kruisbeek, M. A., Margulies, H. D., Shevach, M. E. and Strober, W. (1993). Current protocols in immunology. Wiley Interscience. National Institute of Health 1, 532534.Google Scholar
Crocker, P. R. and Varki, A. (2001). Siglecs, sialic acids and innate immunity. Trends in Immunology 22, 337342. doi: 10.1016/S1471-4906(01)01930-5.CrossRefGoogle ScholarPubMed
da Silva, R. and Sacks, D. L. (1987). Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infection and Immunity 55, 28022806.CrossRefGoogle Scholar
Dutta, A., Mandal, G., Mandal, C., and Chatterjee, M. (2007). In vitro antileishmanial activity of Aloe vera leaf exudate: a potential herbal therapy in leishmaniasis. Glycoconjugate Journal 24, 8186. doi:10.1007/s10719-006-9014-z.CrossRefGoogle ScholarPubMed
Dwyer, D. M., Langreth, S. G. and Dwyer, N. K. (1974). Evidence for a polysaccharide surface coat in the development stages of Leishmania donovani: a fine structure-cytochemical study. Zeitschrift für Parasitenkunde 43, 227249. doi: 10.1007/BF00328879.CrossRefGoogle ScholarPubMed
Ferguson, M. A. (1999). The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. Journal of Cell Science 112, 27992809.CrossRefGoogle ScholarPubMed
García-Barrado, J. A., Gata, J. L., Santano, E., Solís, J. I., Pinto, M.C and Macías, P. (1999). The use of fluorescein 5′-isothiocyanate for studies of structural and molecular mechanisms of soybean lipoxygenase. Biochemical and Biophysical Research Communications 265, 489493. doi:10.1006/bbrc.1999.1677.CrossRefGoogle ScholarPubMed
Ghoshal, A., Mukhopadhyay, S. and Mandal, C. (2008). Sialoglycotherapeutics in protozoal diseases. Mini Reviews in Medicinal Chemistry 8, 358369. doi:10.2174/138955708783955980.CrossRefGoogle ScholarPubMed
Hackam, D. J., Rotstein, O. D., Schreiber, A., Zhang, W. and Grinstein, S. (1997). Rho is required for the initiation of calcium signaling and entry by Fc gamma receptors in macrophages. Journal of Experimental Medicine 186, 955966. doi:10.1084/jem.186.6.955.CrossRefGoogle Scholar
Handman, E., Greenblatt, C. L. and Golding, J. W. (1984). An amphipatic sulphated glycoconjugate of Leishmania: characterization with monoclonal antibodies. EMBO Journal 3, 23012306.CrossRefGoogle Scholar
Hara, S., Yamaguchi, M., Takemori, Y., Furuhata, I. K., Ogura, H. and Nagamura, M. (1989). Determination of mono-O-acetylated N-acetylneuraminic acid in human and rat sera by fluorimetric high performance liquid chromatography. Analytical Biochemistry 179, 162166. doi: 10.1016/0003-2697(89)90218-2.CrossRefGoogle Scholar
Hunter, W. M. (1978). Handbook of Experimental Immunology (ed. Weir, D. M.), pp. 14.114.3. Blackwell Scientific Publications, Oxford, UK.Google Scholar
Kamerling, J. P., Schauer, R., Shukla, A. K., Stoll, S., Van Halbeek, H. and Vliegenthart, J. F. G. (1987). Migration of O-acetyl groups in N,O-acetylneuraminic acids. European Journal of Biochemistry 162, 601607. doi: 10.1111/j.1432-1033.1987.tb10681.x.CrossRefGoogle Scholar
Monteiro, V. G., Lobato, C. S., Silva, A. R., Medina, D. V., de Oliveira, M. A., Seabra, S. H., de Souza, W. and DaMatta, R. A. (2005). Increased association of Trypanosoma cruzi with sialoadhesin positive mice macrophages. Parasitology Research 97, 380385. doi: 10.1007/s00436-005.1460-1.CrossRefGoogle ScholarPubMed
Mukhopadhyay, S. and Mandal, C. (2006). Glycobiology of Leishmania donovani. Indian Journal of Medical Research 123, 203220.Google ScholarPubMed
Mukhopadhyay, S., Bhattacharyya, S., Majhi, R., De, T., Naskar, K., Majumdar, S. and Roy, S. (2000). Use of an attenuated leishmanial parasite as an immunoprophylactic and immunotherapeutic agent against murine visceral leishmaniasis. Clinical and Diagnostic Laboratory Immunology 7, 233240. doi: 10.1128/CDLI.7.2.233-240.2000.CrossRefGoogle ScholarPubMed
Mukhopadhyay, S., Sena, P., Bhattacharyya, S., Majumdar, S. and Roy, S. (1999). Immunoprophylaxis and immunotherapy against experimental visceral leishmaniasis. Vaccine 17, 291300. doi: 10.1016/S0264-410X(98)90017-2.CrossRefGoogle ScholarPubMed
Murray, H. W., Berman, J. D., Davies, C. R. and Saravia, N. G. (2005). Advances in leishmaniasis. Lancet 366, 15611577. doi: 10.1016/S0140-6736(05)67629-5.CrossRefGoogle ScholarPubMed
Nagamune, K., Acosta-Serrano, A., Uemura, H., Brun, R., Kunz-Renggli, C., Maeda, Y., Ferguson, M. A. and Kinoshita, T. (2004). Surface sialic acids taken from the host allow trypanosome survival in tsetse fly vectors. Journal of Experimental Medicine 199, 14451450. doi:10.1084/jem.20030635.CrossRefGoogle ScholarPubMed
Pal, S., Ghosh, S., Mandal, C., Kohla, G., Brossmer, R., Isecke, R., Merling, A., Schauer, R., Schwartz-Albiez, R., Bhattacharya, D. K. and Mandal, C. (2004). Purification and characterization of 9-O-acetylated sialoglycoproteins from leukemic cells and their potential as immunological tool for monitoring childhood acute lymphoblastic leukemia. Glycobiology 14, 859870.CrossRefGoogle ScholarPubMed
Palatnik, C. B., Previato, J. O., Gorin, P. A. J. and Mendonga-Previato, L. (1985). Partial chemical characterization of the carbohydrate moieties in Leishmania adleri glycoconjugates. Molecular and Biochemical Parasitology 14, 4154. doi: 10.1016/0166-6851(85)90104-5.CrossRefGoogle ScholarPubMed
Pereira-Chioccola, V. L., Acosta-Serrano, A., Correia de Almeida, I., Ferguson, M. A., Souto-Padron, T., Rodrigues, M. M., Travassos, L. R. and Schenkman, S. (2000). Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-alpha-galactosyl antibodies. Journal of Cell Science 113, 12991307.CrossRefGoogle Scholar
Ray, J. C. (1932). Cultivation of various leishmania parasites on solid medium. Indian Journal of Medical Research 20, 355357.Google Scholar
Russell, D. G. and Wilhelm, H. (1986). The involvement of the major surface glycoprotein (gp63) of Leishmania promastigotes in attachment to macrophages. Journal of Immunology 136, 26132620. doi: 0022-1767/86/1367-2613S02.00/0.CrossRefGoogle ScholarPubMed
Sacks, D. L., Pimenta, P. F., McConville, M. J., Schneider, P. and Turco, S. J. (1995). Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. Journal of Experimental Medicine 181, 685697.CrossRefGoogle Scholar
Scatchard, G. (1949). The attractions of proteins for small molecules and ions. Annals of the New York Academy of Sciences 51, 660672. doi:10.1111/j.1749-6632.1949.tb27297.x.CrossRefGoogle Scholar
Schauer, R. (2000). Achievements and challenges of sialic acid research. Glycoconjugate Journal 17, 485499. doi: 10.1023/A:1011062223612.CrossRefGoogle ScholarPubMed
Sen, G. and Mandal, C. (1995). The specificity of the binding site of Achatinin-H, a sialic acid-binding lectin from Achatina fulica. Carbohydrate Research 268, 115125. doi: 10.1016/0008-6215(94)00311-3.CrossRefGoogle ScholarPubMed
Sharma, V., Chatterjee, M., Mandal, C., Sen, S. and Basu, D. (1998). Rapid diagnosis of Indian visceral leishmaniasis using Achatinin-H, a 9-O-acetylated sialic acid binding lectin. American Journal of Tropical Medicine and Hygiene 58, 551554.CrossRefGoogle ScholarPubMed
Sinha, D., Bhattacharya, D. K. and Mandal, C. (1999). A colorimetric assay to evaluate the chemotherapeutic response of children with acute lymphoblastic leukemia (ALL) employing achatininH: a 9-O-acetyl sialic acid binding lectin. Leukemia Research 23, 803809. doi:10.1016/S0145-2126(99)00093-4.CrossRefGoogle ScholarPubMed
Shukla, A. K. and Schauer, R. (1982). Fluorimetric determination of unsubstituted and 9(8)-O-acetylated sialic acids in erythrocyte membranes. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 363, 255262.CrossRefGoogle ScholarPubMed
Stehling, P., Gohlke, M., Fitzner, R. and Reutter, W. (1998). Rapid analysis of O-acetylated neuraminic acids by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Glycoconjugate Journal 15, 339344. doi:10.1023/A:1006965600322.CrossRefGoogle ScholarPubMed
Tolson, D. L., Turco, S. J., Beecroft, R. P. and Pearson, T. W. (1989). The immunochemical structure and surface arrangement of Leishmania donovani lipophosphoglycan determined using monoclonal antibodies. Molecular and Biochemical Parasitology 35, 109118.CrossRefGoogle ScholarPubMed
Turco, S. J., Hull, S. R., Orlandi, P. A. J., Sheperd, S. D., Homans, S. W., Dwek, R. A. and Rademacher, T. W. (1987). Structure of the major carbohydrate fragments of the Leishmania donovani lipophosphoglycan. Biochemistry 26, 62336238. doi: 10.1021/bi00393a042.CrossRefGoogle ScholarPubMed
Turco, S. J., Späth, F. and Beverley, S. M. (2001). Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends in Parasitology 17, 223226. doi: 10.1016/S1471-4922(01)01895-5.CrossRefGoogle ScholarPubMed
Vlasak, R., Krystal, M., Nacht, M. and Palese, P. (1987). The influenza C virus glycoprotein (HE) exhibits receptor binding (Hemagglutinin) and destroying (esterase) activities. Virology 160, 419425. doi: 10.1016/0042-6822(87)90013-4.CrossRefGoogle ScholarPubMed
Weir, D. M. (1980). Surface carbohydrates and lectins in cellular recognition. Immunology Today 1, 4551. doi: 10.1016/0167-5699(80)90032-8.CrossRefGoogle ScholarPubMed
Wilson, M. E. and Hardin, K. K. (1988). The major concanavalin A-binding surface glycoprotein of Leishmania donovani chagasi promastigotes is involved in attachment to human macrophages. Journal of Immunology 141, 265272.CrossRefGoogle ScholarPubMed
Wilson, M. E. and Pearson, R. D. (1986). Evidence that Leishmania donovani utilizes a mannose receptor on human mononuclear phagocytes to establish intracellular parasitism. Journal of Immunology 136, 46814688.CrossRefGoogle ScholarPubMed
Wilson, M. E. and Pearson, R. D. (1988). Roles of CR3 and mannose receptors in the attachment and ingestion of Leishmania donovani by human mononuclear phagocytes. Infection and Immunity 56, 363369.CrossRefGoogle ScholarPubMed
Xavier, M. T., Previato, J. O., Gorin, P. A. and Mendonga-Previato, L. (1987). Chemical structure of a galactose-rich glycoprotein of Leishmania tarentolae. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 88, 101104. doi: 10.1016/0305-0491(87)90086-1.CrossRefGoogle ScholarPubMed