Astogenetic trajectories have constrained evolutionary changes in bryozoans. Rates and timing of astogenetic differentiation have been modified for characters defining the morphology of zooids, subcolonies, and colonies. This paper catalogs 46 examples of bryozoan heterochrony, representing all five skeletonized orders. Heterochrony is inferred to have been a pervasive phenomenon in the evolution of Paleozoic stenolaemates, illustrated by 40 examples, 19 of which produced paedomorphosis and 21 peramorphosis. As a consequence, a restricted range of morphologic states has reappeared repetitively as homeomorphies and evolutionary reversals. Large-scale patterns developed across both geologic time and geographic space reflect variation in heterochronic products irrespective of the developmental processes by which they were achieved. Available evidence indicates that smaller, paedomorphic, and more plastic species inhabited onshore, low-diversity areas. Nonheritable plasticity is inferred to be a correlate of early growth stages and paedomorphosis. Taller, generally peramorphic species with damped plasticity are found in higher diversity, offshore regions. Seven key innovations, which first appeared during the early diversification of bryozoan clades, are peramorphic, and recapitulation was a predominant pattern during their Ordovician radiation. Trends in later phylogeny, on the other hand, have favored paedomorphic derived morphologies, as illustrated by 19 of the 32 examples. Recurrent reverse recapitulation suggests that offshore ancestors frequently gave rise to onshore paedomorphs.