Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T12:29:39.981Z Has data issue: false hasContentIssue false

Biogeographic control of trilobite mass extinction at an Upper Cambrian “biomere” boundary

Published online by Cambridge University Press:  08 April 2016

Stephen R. Westrop
Affiliation:
Department of Geology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
Rolf Ludvigsen
Affiliation:
Department of Geology, University of Toronto, Toronto, Ontario M5S 1A1, Canada

Abstract

Extinctions at the top of the Sunwaptan Stage (=“Ptychaspid Biomere”) near the Cambrian-Ordovician boundary eliminated about half of North American trilobite families. The families that extend from the shelf into the upper slope show significantly higher survival than those confined to the shelf. Biofacies and lithofacies distribution patterns indicate that the extinctions cannot be attributed to a shelfwide physical environmental perturbation, such as a fall in water temperature or the spread of anoxic waters. We develop a simple biogeographic model which suggests that diversity of a faunal province is influenced profoundly by changes in the number of component biofacies. This model is tested with an analysis of biofacies distribution patterns across the upper boundary of the Sunwaptan Stage. The extinctions correspond closely to lithofacies shifts in the outer shelf that indicate the initiation of major paleogeographic changes, possibly in response to a sea-level rise. The effects of these changes cascade across the entire shelf by the shoreward migration of off-shelf and shelf-margin taxa. Biofacies become reduced in number through telescoping and their environmental ranges expand during the extinction interval, suggesting an increase in the proportion of eurytopic taxa. Selective survival of wide-ranging eurytopes may have influenced the dynamics of faunal replacement by lowering speciation rates of shelf taxa. Consequently, the proportion of shelf endemics will decline and biofacies will be dominated by immigrant taxa. There are sufficient similarities in extinction patterns across the upper boundary of the Sunwaptan Stage and those at other Upper Cambrian stage boundaries to suggest that the biogeographic model developed here may have broader application.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aigner, T. 1982. Calcareous tempestites: storm-dominated stratification in Upper Muschelkalk limestone (Middle Trias, southwest Germany). Pp. 180198. In: Einsele, G. and Seilacher, A., eds. Cyclic and Event Stratification. Springer-Verlag; Berlin, London and New York.Google Scholar
Aitken, J. D. 1966. Middle Cambrian to Middle Ordovician cyclic sedimentation, southern Rocky Mountains, Alberta. Can. Bull. Petrol. Geol. 14:405441.Google Scholar
Alvarez, L. D., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinctions. Science. 208:10951108.Google Scholar
Brady, M. J. and Rowell, A. J. 1976. An Upper Cambrian subtidal blanket carbonate, eastern Great Basin. Brigham Young Univ. Geol. Stud. 23:153163.Google Scholar
Brett, C. E., Liddell, W. D., and Derstler, K. L. 1983. Late Cambrian hard substrate communities from Montana and Wyoming: the oldest known hardground encrusters. Lethaia. 16:281289.Google Scholar
Carr, T. R. and Kitchell, J. H. 1980. Dynamics of taxonomic diversity. Paleobiology. 6:427443.Google Scholar
Connor, E. F. and McCoy, E. D. 1979. The statistics and biology of the species-area relationship. Am. Nat. 113:791883.Google Scholar
Cook, H. E. and Taylor, M. E. 1977. Comparisons of continental slope and shelf environments on the Upper Cambrian and lowest Ordovician of Nevada. Pp. 5181. In: Cook, H. E. and Enos, P., eds. Deep-water Carbonate Environments. Soc. Econ. Paleontol. Mineral. Spec. Publ. 25.Google Scholar
Dravis, J. 1979. Rapid and widespread generation of Recent oolitic hardgrounds on a high energy Bahamian platform. Eleuthera Bank, Bahamas. J. Sed. Petrol. 49:195208.Google Scholar
Flessa, K. W. and Imbrie, J. 1973. Evolutionary pulsations: evidence from Phanerozoic diversity patterns. Pp. 247285. In: Tarling, D. H. and Runcorn, S. K., eds. Implications of Continental Drift for the Earth Sciences. 1. Academic Press; London.Google Scholar
Fortey, R. A. 1975. Early Ordovician trilobite communities. Fossils and Strata. 4:339360.Google Scholar
Fortey, R. A. 1983. Cambrian-Ordovician trilobites from the boundary beds in western Newfoundland and their phylogenetic significance. Spec. Pap. Palaeontol. 30:179211.Google Scholar
Fortey, R. A. 1984. Global earlier Ordovician transgressions and regressions and their biological implications. Pp. 3750. In: Bruton, D. L., ed. Aspects of the Ordovician System. Universitesforlaget; Oslo.Google Scholar
Hallam, A. 1984. Pre-Quarternary sea-level changes. Ann. Rev. Earth Planet. Sci. 12:205243.Google Scholar
Hansen, T. A. 1978. Larval dispersal and species longevity in Lower Tertiary gastropods. Science. 199:885887.Google Scholar
Hansen, T. A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology. 6:193207.CrossRefGoogle Scholar
Hardy, M. E. 1985. Testing for adaptive radiation: the Ptychaspid (Trilobita) Biomere of the Cambrian. Pp. 379397. In: Valentine, J. W., ed. Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Jaanusson, V. 1979. Ordovician. Pp. 136166. In: Robison, R. A. and Teichert, C., eds. Treatise on Invertebrate Paleontology, Part A, Introduction. Geol. Soc. Am. and Univ. Kansas; Lawrence, Kansas.Google Scholar
Jablonski, D. 1984. Keeping time with mass extinctions. Paleobiology. 10:139145.Google Scholar
Jablonski, D. 1985. Marine regressions and mass extinctions: a test using the modern biota. Pp. 335354. In: Valentine, J. W., ed. Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Jablonski, D. 1986. Background and mass extinctions: alternation of macroevolutionary regimes. Science. 231:129133.CrossRefGoogle ScholarPubMed
Jackson, J. B. C. 1974. Biogeographic consequences of eurytopy and stenotopy among marine bivalves and their evolutionary significance. Am. Nat. 108:541560.Google Scholar
James, N. P. 1984. Facies models 10. Shallowing-upward sequences in carbonates. Pp. 213228. In: Walker, R. G., ed. Facies Models. Geoscience Canada, Reprint Series 1 (2nd ed.).Google Scholar
Johnson, J. G. 1974. Extinction of perched faunas. Geology. 2:479482.2.0.CO;2>CrossRefGoogle Scholar
Lochman, C. and Duncan, D. 1944. Early Upper Cambrian faunas of central Montana. Geol. Soc. Am. Spec. Pap. 54. 181 pp.Google Scholar
Longacre, S. A. 1970. Trilobites of the Upper Cambrian Ptychaspid Biomere, Wilberns Formation, central Texas. Paleontol. Soc. Mem. 4 (J. Paleontol. 44(1):suppl.).Google Scholar
Ludvigsen, R. 1979. Middle Ordovician trilobite biofacies, southern Mackenzie Mountains. Pp. 137. In Stelck, C. R. and Chatterton, B. D. E., eds. Western and Arctic Canadian Biostratigraphy. Geol. Assoc. Can. Spec. Pap. 18.Google Scholar
Ludvigsen, R. 1982. Upper Cambrian and Lower Ordovician trilobite biostratigraphy of the Rabbitkettle Formation, western District of Mackenzie. Life Sci. Contr. R. Ont. Mus. 134:1188.Google Scholar
Ludvigsen, R., Pratt, B. R., and Westrop, S. R. 1986. The myth of an eustatic sea-level drop near the base of the Ibexian Series. New York State Mus. Bull. (in press).Google Scholar
Ludvigsen, R. and Westrop, S. R. 1983. Trilobite biofacies of the Cambrian-Ordovician boundary interval in northern North America. Alcheringa. 7:301319.Google Scholar
Ludvigsen, R. and Westrop, S. R. 1985. Three new Upper Cambrian stages for North America. Geology. 13:139143.Google Scholar
MacArthur, R. H. and Wilson, E. O. 1967. The Theory of Island Biogeography. 203 pp. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Markello, J. R. and Read, J. F. 1981. Carbonate ramp-to-deeper shale shelf transitions of an Upper Cambrian intrashelf basin, Nolichucky formation, southwest Virginia Appalachians. Sedimentology. 28:573597.Google Scholar
Marshall, L. G., Webb, S. D., Sepkoski, J. J. Jr., and Raup, D. M. 1982. Mammalian evolution and the great American interchange. Science. 215:13511357.CrossRefGoogle ScholarPubMed
Martin, T. E. 1981. Species-area slopes and their coefficients: a caution on their interpretation. Am. Nat. 118:823827.Google Scholar
McGuinness, K. A. 1984. Equations and explanations in the study of species-area curves. Biol. Rev. 59:423440.Google Scholar
Miller, J. F. 1978. Upper Cambrian and lowest Ordovician conodont faunas of the House Range, Utah. Pp. 133. In: Miller, J. F., ed. Upper Cambrian to Middle Ordovician conodont faunas of western Utah. Southwest Missouri State Univ. Geosci. Ser. 5.Google Scholar
Miller, J. F. 1984. Cambrian and earliest Ordovician conodont evolution, biofacies, and provincialism. Geol. Soc. Am. Spec. Pap. 196:4368.Google Scholar
Miller, J. F., Taylor, M. E., Stitt, J. H., Ethington, R. L., and Taylor, J. F. 1982. Potential Cambrian-Ordovician boundary stratotype sections in the western United States. Pp. 155180. In: Bassett, M. G. and Dean, W. T., eds. The Cambrian-Ordovician boundary: sections, fossil distributions and correlations. National Museum of Wales, Geol. Ser. 3.Google Scholar
Orth, C. J., Knight, J. D., Quintana, L. R., Gilmore, J. S., and Palmer, A. R. 1984. A search for Ir abundance anomalies at two Late Cambrian biomere boundaries in western Utah. Science. 233:163165.Google Scholar
Palmer, A. R. 1965a. Biomere—a new kind of biostratigraphic unit. J. Paleontol. 39:149153.Google Scholar
Palmer, A. R. 1965b. Trilobites of the Late Cambrian Pterocephaliid Biomere in the Great Basin. U. S. Geol. Surv. Prof. Pap. 493. 105 pp.Google Scholar
Palmer, A. R. 1971. The Cambrian of the Great Basin and adjacent areas, western United States. Pp. 178. In: Holland, C. H., ed. Lower Paleozoic Rocks of the World. 1. Cambrian of the New World. Wiley; London.Google Scholar
Palmer, A. R. 1979. Biomere boundaries re-examined. Alcheringa. 3:3341.Google Scholar
Palmer, A. R. 1981. Subdivision of the Sauk Sequence. Pp. 160162. In: Taylor, M. E., ed. Short papers for the Second International Symposium on the Cambrian System. U.S. Geol. Surv. Open File Rept. 81–743.Google Scholar
Palmer, A. R. 1982. Biomere boundaries: a possible test for extraterrestrial perturbation of the biosphere. Pp. 469476. In: Silver, L. T. and Schultz, P. H., eds. Geological implications of impacts of large asteroids and comets on the earth. Geol. Soc. Am. Spec. Pap. 190.CrossRefGoogle Scholar
Palmer, A. R. 1984. The biomere problem: evolution of an idea. J. Paleontol. 58:599611.Google Scholar
Rasetti, F. 1965. Upper Cambrian trilobite faunas of northeastern Tennessee. Smithson. Misc. Collect. 148:1127.Google Scholar
Schopf, T. J. M. 1974. Permo-Triassic extinctions: relation to sea floor spreading. J. Geol. 82:129143.Google Scholar
Schopf, T. J. M. 1979. The role of biogeographic provinces in regulating marine faunal diversity through geologic time. Pp. 449457. In: Gray, J. and Boucot, A. J., eds. Historical Biogeography, Plate Tectonics and the Changing Environment. Oregon State Univ. Press; Corvallis, Oregon.Google Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology. 10:246267.Google Scholar
Sepkoski, J. J. Jr. and Sheehan, P. M. 1983. Diversity, faunal change, and community replacement during the Ordovician radiations. Pp. 673717. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press; New York.Google Scholar
Shinn, E. A. 1969. Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology. 12:109144.Google Scholar
Simberloff, D. S. 1972. Models in biogeography. Pp. 160191. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper; San Francisco.Google Scholar
Simberloff, D. S. 1974a. Permo-Triassic extinctions: effects of area on biotic equilibrium. J. Geol. 82:267274.Google Scholar
Simberloff, D. S. 1974b. Equilibrium theory of island biogeography and ecology. Ann. Rev. Ecol. Syst. 5:161182.CrossRefGoogle Scholar
Sokal, R. R. and Rohlf, F. J. 1981. Biometry. (2nd ed.). 859 pp. W. H. Freeman; San Francisco.Google Scholar
Stanley, S. M. 1984a. Marine mass extinctions: a dominant role for temperature. Pp. 69117. In: Nitecki, M. H., ed. Extinctions. Univ. Chicago Press; Chicago.Google Scholar
Stanley, S. M. 1984b. Temperature and biotic crises in the marine realm. Geology. 12:205208.Google Scholar
Stitt, J. H. 1971a. Repeating evolutionary pattern in Late Cambrian trilobite biomeres. J. Paleontol. 45:178181.Google Scholar
Stitt, J. H. 1971b. Late Cambrian and earliest Ordovician trilobites, Timbered Hills and lower Arbuckle Groups, western Arbuckle Mountains, Murray County, Oklahoma. Okla. Geol. Surv. Bull. 110. 83 pp.Google Scholar
Stitt, J. H. 1975. Adaptive radiation, trilobite paleoecology and extinction, Ptychaspid biomere, Late Cambrian of Oklahoma. Fossils and Strata. 4:381390.Google Scholar
Stitt, J. H. 1977. Late Cambrian and earliest Ordovician trilobites, Wichita Mountains area, Oklahoma. Okla. Geol. Surv. Bull. 124. 79 pp.Google Scholar
Stitt, J. H. 1983. Trilobite biostratigraphy and lithostratigraphy of the McKenzie Hill Limestone, Wichita and Arbuckle Mountains, Oklahoma. Okla. Geol. Surv. Bull. 134. 54 pp.Google Scholar
Taylor, M. E. 1977. Late Cambrian of western North America: trilobite biofacies, environmental significance and biostratigraphic implications. Pp. 297–245. In: Kauffman, E. G. and Hazel, J. E., eds. Concepts and Methods of Biostratigraphy. Dowden, Hutchison & Ross; Stroudsburg, Pennsylvania.Google Scholar
Taylor, M. E. and Cook, H. E. 1976. Continental shelf and slope facies in the Upper Cambrian and lowest Ordovician of Nevada. Brigham Young Univ. Geol. Stud. 23:181214.Google Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. 511 pp. Prentice-Hall Inc.; Englewood Cliffs, New Jersey.Google Scholar
Valentine, J. W. and Moores, E. W. 1970. Plate-tectonic regulation of faunal diversity and sea level: a model. Nature. 228:657659.Google Scholar
Webb, S. D. 1969. Extinction-origination equilibria in Late Cenozoic land mammals of North America. Evolution. 23:688702.Google Scholar
Westrop, S. R. 1984. Late Cambrian and earliest Ordovician trilobites, southern Canadian Rocky Mountains, Alberta. Ph.D. thesis, Univ. Toronto. 990 pp.Google Scholar
Winston, D. and Nicholls, H. 1967. Late Cambrian and Early Ordovician faunas from the Wilberns Formation of central Texas. J. Paleontol. 41:6696.Google Scholar
Wise, K. P. and Schopf, T. J. M. 1981. Was marine faunal diversity in the Pleistocene affected by changes in sea level? Paleobiology. 7:394399.Google Scholar