Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T11:28:54.077Z Has data issue: false hasContentIssue false

Jurassic bivalve biogeography

Published online by Cambridge University Press:  08 April 2016

A. Hallam*
Affiliation:
Department of Geological Sciences, University of Birmingham, England

Abstract

An analysis of the geographic and stratigraphic distribution of nearly 200 Jurassic bivalve genera leads to a number of new discoveries. Similarities between regions reached a maximum in the middle of the period, while the percentage of endemism correspondingly decreased. Diversity increased through the Lower Jurassic to a level which remained more or less stable from Middle Jurassic times onwards, while the origination rate shows the opposite trend. Extinction rate increased early in the period to a maximum in the Pliensbachian and fell thereafter to a low value until the Tithonian, which is marked by a sharp rise. The overall taxonomic composition of the fauna in terms of orders remained substantially stable throughout the period. The relationship with facies is discussed and three major ecological groups distinguished: marginal marine (euryhaline), shallow neritic and deep neritic. Certain pterioids have a very wide distribution and the order as a whole has a significantly higher proportion of cosmopolitan to endemic genera than any other order; the hippuritoids and trigonioids have the highest proportion of endemics. Five faunal provinces are distinguished, and the dominant control on distribution considered to be sea level. Times of high sea level were marked by widespread distribution of taxa and low endemism. High extinction rates were provoked both by regression (in the Tithonian) and by a sharp rise of sea level in the Toarcian, marked by the widespread onset of anaerobic or near-anaerobic conditions in many epicontinental seas. Some latitudinal control is recognised, notably for the hippuritoids and other stenotopic thick-shelled genera, which are confined to low latitudes.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beauvais, L. 1973. Upper Jurassic hermatypic corals. pp. 317328. In: Hallam, A. ed. Atlas of Palaeobiogeography. 531 pp.Elsevier; Amsterdam.Google Scholar
Bodylevsky, V. I. and Shulgina, N. I. 1958. Jurassic and Cretaceous faunas of the lower course of the Yenissei River. Trudy Inst. Geol. Arktiki. 93:199(in Russian).Google Scholar
Burckhardt, C. 1903. Beiträge zur Kenntnis der Jura und Kreife-Formation der Cordillera. Palaeontographica. 50:172.Google Scholar
Cox, L. R. 1935. The Triassic, Jurassic and Cretaceous Gastropoda and Lamellibranchia of the Attock district (Punjab). Palaeontol. Indica. 20, 5:127.Google Scholar
Cox, L. R. 1940. The Jurassic lamellibranch of Kuchh (Cutch). Palaeontol. Indica. (9) 3,3:1157.Google Scholar
Cox, L. R. 1952. The Jurassic lamellibranch fauna of Cutch (Kachh) No. 3, Families Pectinidae, Amusiidae, Plicatulidae, Limidae, Ostreidae and Trigoniidae (Supplement). Palaeontol. Indica. (9) 3,3:1128.Google Scholar
Cox, L. R. 1965. Jurassic Bivalvia and Gastropoda from Tanganyika and Kenya. Bull. Brit. Mus. (Nat. Hist.) Geol. suppl. 1:1209.Google Scholar
Cragin, F. J. 1905. Paleontology of the Malone Jurassic Formation of Texas. U.S. Geol. Surv. Bull. 266:170.Google Scholar
Enay, R. 1973. Upper Jurassic (Tithonian) ammonites. pp. 297308. In: Hallam, A., ed. Atlas of Palaeobiogeography. 531 pp.Elsevier; Amsterdam.Google Scholar
Frebold, H. 1957. The Jurassic Fernie Group in the Canadian Rocky Mountains and foothills. Geol. Surv. Can. Mem. 287.Google Scholar
Frebold, H. and Tipper, H. W. 1970. Status of the Jurassic in the Canadian Cordillera of British Columbia, Alberta, and southern Yukon. Can. J. Earth Sci. 7:121.CrossRefGoogle Scholar
Gottsche, C. 1878. Ueber jurassische Versteinerungen aus der argentinischen Cordillera. Palaeontographica. 2, Abt. 3:150.Google Scholar
Hallam, A. 1967. The bearing of certain palaeozoogeographic data on continental drift. Palaeogeog., Palaeoclimatol., Palaeoecol. 3:201241.CrossRefGoogle Scholar
Hallam, A. 1968. Morphology, palaeoecology and evolution of the genus Gryphaea in the British Lias. Phil. Trans. R. Soc. London, ser. B. 254:91128.Google Scholar
Hallam, A. 1971. Provinciality in Jurassic faunas in relation to facies and palaeogeography. pp. 129152. In: Middlemiss, F. A., Rawson, P. E., and Newell, G., eds. Faunal Provinces in Space and Time. Seel House Press; Liverpool.Google Scholar
Hallam, A. 1973. Distributional patterns in contemporary terrestrial and marine animals. pp. 93105. In: Hughes, N. F., ed. Organisms and Continents Through Time. Spec. Papers in Palaeontol. No. 12. Palaeontol. Assoc. London.Google Scholar
Hallam, A. 1975. Jurassic environments. 269 pp. Cambridge Univ. Press; Cambridge, England.Google Scholar
Hallam, A. and Gould, S. J. 1975. The evolution of British and American Middle and Upper Jurassic Gryphaea: a biometric study. Proc. R. Soc. London, ser. B. 189:511542.Google Scholar
Hallam, A. 1976. Stratigraphic distribution and ecology of European Jurassic bivalves. Lethaia. 9:245259.CrossRefGoogle Scholar
Hayami, I. 1960. Jurassic inoceramids in Japan. J. Fac. Sci. Univ. Tokyo, sect. 2. 12:277328.Google Scholar
Hayami, I. 1961. On the Jurassic pelecypod faunas in Japan. J. Fac. Sci. 13:243343.Google Scholar
Hayami, I. 1969. Occurrence of Tutcheria from the Lower Jurassic of west Japan. Trans. Proc. Palaeontol. Soc. Japan, N.S. no. 73:2640.Google Scholar
Hayami, I. 1972. Lower Jurassic Bivalvia from the environs of Saigon. pp. 179230. In: Kobayashi, T. and Toriyama, R., eds. Geology and Palaeontology of Southeast Asia. Vol. 10. Univ. Tokyo Press; Tokyo.Google Scholar
Hillebrandt, A. von 1973a. Neue Ergebnisse über den Jura in Chile und Argentina. Münster Forsch. Geol. Paläontol. 31/32:167199.Google Scholar
Hillebrandt, A. von 1973b. Die Ammonitengattungen Bouleiceras und Frechiella im Jura von Chile und Argentinien. Ecl. geol. Helv. 66:351363.Google Scholar
Holdhaus, K. 1913. Fauna of the Spiti Shales (Lamellibranchiata and Gastropoda). Palaeontol. Indica (9) 4:397456.Google Scholar
Hughes, C. P. 1973. Analysis of past faunal distributions. pp. 219230. In: Tarling, D. H. and Runcorn, S. K., eds. Implications of Continental Drift to the Earth Sciences. Academic Press; London, New York.Google Scholar
Imlay, R. W. 1940. Upper Jurassic pelecypods from Mexico. J. Paleontol. 14:393411.Google Scholar
Imlay, R. W. 1945. Jurassic fossils from the southern States. J. Paleontol. 19:253276.Google Scholar
Imlay, R. W. 1964a. Marine Jurassic pelecypods from central and southern Utah. U.S. Geol. Surv. Prof. Paper. 483C:140.Google Scholar
Imlay, R. W. 1964b. Upper Jurassic mollusks from eastern Oregon and western Idaho. U.S. Geol. Surv. Prof. Paper. 483D:121.Google Scholar
Imlay, R. W. 1967a. Twin Creek Limestone (Jurassic) in the Western Interior of the United States. U.S. Geol. Surv. Prof. Paper. 540:1105.Google Scholar
Imlay, R. W. 1967b. The Mesozoic pelecypods Otapiria and Lupherella Imlay, new genus, in the United States. U.S. Geol. Surv. Prof. Paper. 573B:111.Google Scholar
Imlay, R. W. 1969. Structural and stratigraphic significance of the Buchia zones in the Colyear Springs—Paskenta area, California. U.S. Geol. Surv. Prof. Paper. 647A:124.Google Scholar
Imlay, R. W. 1973. Jurassic paleobiogeography of Alaska. U.S. Geol. Surv. Prof. Paper. 801:1.34.Google Scholar
Jaworski, E. 1926. Beiträge zur Paläontologie und Stratigraphie des Lias, Doggers, Tithons und der Unter-Kreide in den Kordilleren im Süden der Provinz Mendoza (Argentinien). I: Lias und Dogger, Geol. Rundschau. 17a:373427(Steinmann Festschrift).Google Scholar
Jeletsky, J. A. 1963. Malayomaorica gen. nov. (Family Aviculopectinidae) from the Indo-Pacific Upper Jurassic; with comments on related forms. Palaeontology. 6:148160.Google Scholar
Jeletsky, J. A. 1966. Upper Volgian (latest Jurassic) ammonites and Buchias of Arctic Canada. Geol. Surv. Can. Bull. 128:151.Google Scholar
Kauffman, E. G. 1973. Cretaceous Bivalvia, pp. 353383. In: Hallam, A., ed. Atlas of Palaeobiogeography. Elsevier; Amsterdam.Google Scholar
Kitchen, F. L. 1903. The Jurassic fauna of Cutch: the Lamellibranchiata, no. 1, genus Trigonia. Palaeontol. Indica. (9) 3, 1122.Google Scholar
Krumbeck, L. 1923. Zur Kenntnis des Juras der Insel Timor sowie des Aucellen-Horizontes von Seran und Bura. Paläontol. von Timor, Lief. 20:1132. Stuttgart.Google Scholar
Leanza, A. F. 1942. Los pelecypodos del Lias de Piedra Pintada en el Neuquen. Rev. Museo de la Plata, n.s. 2(10):145206.Google Scholar
Marwick, J. 1953. Divisions and faunas of the Hokonui System (Triassic and Jurassic). N.Z. Geol. Surv. Palaeontol. Bull. 21:1141.Google Scholar
Möricke, W. 1894. Versteinerungen des Lias und Unteroolith von Chile. N. Jb. Min. Geol. Palaeontol. 9:11000.Google Scholar
Pitman, W. C. and Talwani, M. 1972. Sea floor spreading in the North Atlantic. Bull. Geol. Soc. Am. 83:619646.Google Scholar
Simberloff, D. 1974. Permo-Triassic extinctions: effects of area on biotic equilibrium. J. Geol. 82:267274.Google Scholar
Skwarko, S. K. 1974. Jurassic fossils of Western Australia, 1: Bajocian Bivalvia of the Newmarracarra Limestone and the Kojarena Sandstone. Bur. Min. Res. Bull. 150:153.Google Scholar
Smith, A. G., Briden, J. C., and Drewry, G. E. 1973. Phanerozoic world maps. pp. 139. In: Hughes, N. F., ed. Organisms and Continents Through Time. Spec. Papers in Palaeontol. no. 12. Palaeont. Assoc.; London.Google Scholar
Stanley, S. M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve molluscs—a consequence of mantle fusion and siphon formation. J. Paleontol. 42:214229.Google Scholar
Stefanini, G. 1939. Molluschi di Giuralias della Somalia. Gastropodi e Lamellibranchi. Palaeontol. Ital. 32, suppl. 4:103270.Google Scholar
Stehli, F. G., McAlester, A. L. and Helsey, C. E. 1967. Taxonomic diversity of Recent bivalves and some implications for geology. Bull. Geol. Soc. Am. 78:455466.CrossRefGoogle Scholar
Stevens, G. R. 1968. The Jurassic System in New Zealand. N.Z. Geol. Surv. Rep. 35:126.Google Scholar
Stevens, G. R. 1973. Jurassic belemnites. pp. 254274. In: Hallam, A., ed. Atlas of Palaeobiogeography. Elsevier; Amsterdam.Google Scholar
Tilmann, N. 1917. Die Fauna des Unteren Lias in Nord-und Mittel-Peru. N. Jb. Min. Geol. Palaeontol. 41:628712.Google Scholar
Tornquist, A. 1898. Der Dogger am Espinazito-Pass, nebst einer Zusammenstellung der jetzigen Kenntnisse von der argentinischen Jura Formation. Palaeontol. Abh. 8:135201.Google Scholar
Wandel, G. 1936. Beiträge zur Kenntnis der jurassischen Mollusken-Fauna von Misol, Ost-Celebes, Buton, Seran und Jamdena. N. Jb. Min. Geol. Palaeontol. 75B:447526.Google Scholar
Weaver, C. E. 1931. Paleontology of the Jurassic and Cretaceous of west central Argentina. Univ. Washington Mem. 1:1402.Google Scholar
Westermann, G. E. G. 1973. The late Triassic bivalve Monotis. pp. 251258. In: Hallam, A., ed. Atlas of Palaeobiogeography. Elsevier; Amsterdam.Google Scholar
Zakharov, V. A. 1966. Late Jurassic and early Cretaceous bivalves of northern Siberia and their ecology: part 1, Order Anisomyaria. pp. 1183. Publ. House ‘Nauka’; Moscow. (in Russian).Google Scholar
Zakharov, V. A. 1970. Late Jurassic and early Cretaceous bivalves of northern Siberia and their ecology: part 2, Family Astartidae. Trudy Inst. Geol. Sibirsk. Akad. Nauk. SSSR. 113:1135. (in Russian).Google Scholar