Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T18:07:11.899Z Has data issue: false hasContentIssue false

Economics, volcanoes, and Phanerozoic revolutions

Published online by Cambridge University Press:  08 February 2016

Geerat J. Vermeij*
Affiliation:
Department of Geology and Center for Population Biology, University of California at Davis, Davis, California 95616-8605

Abstract

Two intervals of the Phanerozoic stand out as times of biosphere-scale revolution in the sense that biogeochemical cycles came under increased control by organisms. These are the early Paleozoic (extending from just before the Cambrian to the Middle Ordovician, a duration of about 100 m.y.), characterized by the appearance of predators, burrowers, and mineralized skeletons, and by the subsequent diversification of planktonic animals and suspension-feeders; and the later Mesozoic (latest Triassic to mid-Cretaceous, a duration of somewhat more than 100 m.y.), marked by a great diversification of predators and burrowers and by the rise of mineralized planktonic protists. This paper explores the economic conditions that make such revolutions possible.

I argue that opportunities for innovation and diversification are enhanced when raw materials and energy are supplied at increasing rates, or when organisms gain greater access to these commodities through rising temperatures and higher metabolic rates. Greater per capita availability of resources enables populations to grow; lessens or alters ecological constraints on functional improvement; makes possible the evolution of high metabolic rates (large incomes), which in turn permit improvement in each of several otherwise incompatible functions; and favors the establishment and spread of daughter species arising through founder speciation. Reductions in productivity reinforce adaptational constraints and may bring about extinctions.

Massive submarine volcanism, together with its associated phenomena of warming, sea-level rise, and widening of warm-weather zones, is proposed to be the chief extrinsic trigger for the Phanerozoic revolutions. The later Mesozoic was characterized by continental rifting, which accompanied massive submarine volcanic eruptions that produced large quantities of nutrients and carbon dioxide. This activity began in the Late Triassic and peaked in the mid- to Late Cretaceous. The Early Cambrian was also a time of rifting and may likewise have been marked by large-scale submarine volcanism. Continental and explosive volcanism, weathering, and upwelling are other potential means for increasing evolutionary opportunity, but their effects are either local or linked directly or indirectly with cooling. Intense chemical weathering in the Early Cambrian, however, may have contributed to the early Paleozoic revolution.

The extrinsic stimulus was greatly amplified through positive feedback by the evolution of higher metabolic rates and other means for acquiring, trading, retaining, and recycling resources more rapidly and from a wider range of environments. Because these novelties usually require a high and predictable supply of resources, their evolution is more likely when extrinsically controlled supplies increase rather than when per capita availability is low.

In the view adopted here, the microevolutionary and microeconomic market forces of competition and natural selection operate against a backdrop of macroeconomic supply and demand. Resources are under both extrinsic and intrinsic control. Positive and negative feedbacks link processes at the micro- and macroeconomic levels. This view complements the genealogical and hierarchical conception of evolution by emphasizing that the pattern of descent is influenced by resources and by market forces operating at all scales of space and time.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Almond, W. D. 1992. Role of temperature and nutrients in extinctions of turritelline gastropods: Cenozoic of the northwestern Atlantic and Northeastern Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology 92:4154.CrossRefGoogle Scholar
Apollonio, S. 1973. Glaciers and nutrients in Arctic seas. Science 180:491493.CrossRefGoogle ScholarPubMed
Arthur, M. A., Dean, W. E., and Schlanger, S. O. 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. Geophysical Monographs 32:504529.Google Scholar
Arthur, M. A., Zachos, J. C., and Jones, D. S. 1987. Primary productivity and the Cretaceous/Tertiary boundary event in the oceans. Cretaceous Research 8:4354.CrossRefGoogle Scholar
Arthur, W. B. 1989. Competing technologies, increasing returns, and lock-in by historical events. Economic Journal 99:116131.CrossRefGoogle Scholar
Axelrod, D. I. 1981. Role of volcanism in climate and evolution. Geological Society of America Special Paper 185:159.CrossRefGoogle Scholar
Baker, E. T., Massoth, G. J., and Feely, R. A. 1987. Cataclysmic hydrothermal venting on the Juan de Fuca Ridge. Nature (London) 329:149151.CrossRefGoogle Scholar
Bakker, R. T. 1977. Tetrapod mass extinctions—a model of the regulation of speciation rates and immigration by cycles of topographic diversity. Pp. 439468in Hallam, A., ed. Patterns of evolution, as illustrated by the fossil record. Elsevier, Amsterdam.CrossRefGoogle Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746in Tevesz, and McCall, 1983.Google Scholar
Bambach, R. K. 1993. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19:372397.CrossRefGoogle Scholar
Barber, R. T., and Chavez, F. P. 1991. Regulation of primary productivity in the equatorial Pacific. Limnology and Oceanography 36:18031815.CrossRefGoogle Scholar
Barron, J. A., and Baldauf, J. B. 1989. Tertiary cooling steps and paleoproductivity as reflected by diatoms and biosiliceous sediments. Pp. 341354in Berger, et al. 1989.Google Scholar
Basaltic Volcanism Study Project. 1981. Basaltic volcanism on the terrestrial planets. Pergamon, New York.Google Scholar
Bengtson, S., and Zhao, Y. 1992. Predatorial borings in Late Precambrian mineralized exoskeletons. Science 257:367369.CrossRefGoogle ScholarPubMed
Benton, M. J. 1989. Mass extinctions among tetrapods and the quality of the fossil record. Philosophical Transactions of the Royal Society of London (B) 325:369386.Google ScholarPubMed
Berger, W. H., and Wefer, G. 1991. Productivity of the glacial ocean: discussion of the iron hypothesis. Limnology and Oceanography 36:18991918.CrossRefGoogle Scholar
Berger, W. H., Smetacek, V. S., and Wefer, G. 1989. Productivity of the ocean: past and present. Wiley, Chichester.Google Scholar
Berggren, W. A., and Prothero, D. R. 1992. Eocene-Oligocene climatic and biotic evolution: an overview. Pp. 128in Prothero, D. R. and Berggren, W. A., eds. Eocene-Oligocene climatic and biotic evolution. Princeton University Press.Google Scholar
Berner, R. A. 1993. Paleozoic atmospheric CO2: importance of solar radiation and plant evolution. Science 261:6870.CrossRefGoogle ScholarPubMed
Berner, R. A., and Raiswell, R. 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta 47:855862.CrossRefGoogle Scholar
Bertness, M. D. 1985. Fiddler crab regulation of Spartina alterniflora production in a New England salt marsh. Ecology 66:10421055.CrossRefGoogle Scholar
Bertrand, P., and Lallier-Vergnes, E. 1993. Past sedimentary organic matter accumulation and degradation controlled by productivity. Nature (London) 364:786788.CrossRefGoogle Scholar
Birkeland, C. 1982. Terrestrial runoff as a cause of outbreaks of Acanthaster planci (Echinodermata: Asteroidea). Marine Biology 69:175185.CrossRefGoogle Scholar
Birkeland, C. 1989. Geographic comparisons of coral-reef community processes. Proceedings of the Sixth International Coral Reef Symposium 1:211220.Google Scholar
Boucot, A. J. 1975. Evolution and extinction rate controls. Elsevier, Amsterdam.Google Scholar
Bralower, W. J., Arthur, M. A., Leckie, R. M., Sliter, W. V., Allard, D. J., and Schlanger, S. O. 1994. Timing and paleoceanography of oceanic dysoxia/anoxia in the late Barremian to early Aptian (Early Cretaceous). Palaios 9:335369.CrossRefGoogle Scholar
Brasier, M. D. 1992. Paleoceanography and changes in the biological cycling of phosphorus across the Precambrian-Cambrian boundary. Pp. 483523in Lipps, J. H. and Signor, P. W., eds. Origin and early evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Braudel, F. 1981. The structures of everyday life (translated by Reynolds, S.). Harper and Row, New York.Google Scholar
Caldeira, K. G., and Rampino, M. R. 1990. Deccan volcanism, greenhouse warming, and the Cretaceous/Tertiary boundary. Geological Society of America Special Paper 274:117123.CrossRefGoogle Scholar
Campbell, I. H., Czamanske, G. K., Fedorenko, V. A., Hill, R. I., and Stepanov, V. 1992. Synchronism of the Siberian Traps and the Permian-Triassic boundary. Science 258:17601763.CrossRefGoogle ScholarPubMed
Cann, J. 1991. Introduction and the ophiolite model. Pp. 15in Floyd, P. A., ed. Oceanic basalts. Blackie, Glasgow.Google Scholar
Capo, R. C., and DePaolo, D. J. 1990. Seawater strontium isotopic variations from 2.5 million years ago to the present. Science 249:5155.CrossRefGoogle ScholarPubMed
Carr, T. R., and Kitchell, J. A. 1980. Dynamics of taxonomic diversity. Paleobiology 6:247443.CrossRefGoogle Scholar
Clarke, A. 1983. Life in cold water: the physiological ecology of polar marine ectotherms. Oceanography and Marine Biology Annual Review 21:341453.Google Scholar
Clarke, A. 1993. Temperature and extinction in the sea: a physiologist's view. Paleobiology 19:499518.CrossRefGoogle Scholar
Coffin, M. F., and Eldholm, O. 1992. Volcanism and continental break-up: a global compilation of large igneous provinces. Pp. 1730in Storey, B. C., Alabaster, J., and Pankhurst, R. J., eds. Magmatism and the causes of continental break-up. Geological Society Special Publication 68.Google Scholar
Coffin, M. F., and Eldholm, O. 1993. Scratching the surface: estimating dimensions of large igenous provinces. Geology 21:515519.2.3.CO;2>CrossRefGoogle Scholar
Conway Morris, S. 1993. The fossil record and the early evolution of the Metazoa. Nature (London) 361:219225.CrossRefGoogle Scholar
Conway Morris, S., and Bengtson, S. 1994. Cambrian predators: possible evidence for boreholes. Journal of Paleontology 68:123.CrossRefGoogle Scholar
Cook, P. J. 1992. Phosphogenesis around the Proterozoic-Phanerozoic transition. Journal of the Geological Society of London 149:615620.CrossRefGoogle Scholar
Cook, P. J., and Shergold, J. H. 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature (London) 308:231236.CrossRefGoogle Scholar
Cook, R. J., Barron, J. C., Papendick, R. I., and Williams, G. J. 1981. Impact on agriculture of the Mount St. Helens eruptions. Science 211:1622.CrossRefGoogle ScholarPubMed
Courtillot, V., Besse, J., Vandamme, D., Montigny, R., Jaeger, J. J., and Cappetta, H. 1986. Deccan flood basalts at the Cretaceous/Tertiary boundary. Earth and Planetary Science Letters 80:361374.CrossRefGoogle Scholar
Cracraft, J. 1985. Biological diversification and its causes. Annals of the Missouri Botanical Garden 72:794822.CrossRefGoogle Scholar
Crowley, T. J. 1991a. Modeling Pliocene warmth. Quaternary Science Reviews 10:275282.CrossRefGoogle Scholar
Crowley, T. J. 1991b. Past CO2 changes and tropical sea surface temperatures. Paleoceanography 6:387394.CrossRefGoogle Scholar
Crowley, T. J., and North, J. R. 1991. Paleoclimatology. Oxford University Press, New York.Google Scholar
Darwin, C. 1872. The origin of species by natural selection or the preservation of favored races in the struggle for life, 6th ed.Colliers, New York.Google Scholar
Davies, T. A., Hay, W. W., Southam, J. R., and Worsley, T. R. 1977. Estimates of Cenozoic oceanic sedimentation rates. Science 197:5355.CrossRefGoogle ScholarPubMed
de Graciansky, P. C., Deroo, G., Herbin, J. P., Montadert, L., Müller, C., Schaaf, A., and Sigal, J. 1984. Ocean-wide stagnation episode in the Late Cretaceous. Nature (London) 308:346349.CrossRefGoogle Scholar
DeAngelis, D. L. 1992. Dynamics of nutrient cycling and food webs. Chapman and Hall, London.CrossRefGoogle Scholar
den Hartog, C. 1970. The sea-grasses of the world. North-Holland, Amsterdam.Google Scholar
Denny, M. W. 1990. Terrestrial versus aquatic biology: the medium and its message. American Zoologist 30:111121.CrossRefGoogle Scholar
Des Marais, D. J., Strauss, H., Summons, R. E., and Hayes, J. M. 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature (London) 359:605609.CrossRefGoogle ScholarPubMed
Dowsett, H. J., Cronin, T. M., Poore, R. Z., Thompson, R. S., Whatley, R. C., and Wood, A. M. 1992. Micropaleontological evidence for increased meridional heat transport in the North Atlantic Ocean during the Pliocene. Science 258:11311135.CrossRefGoogle ScholarPubMed
Duggins, D. O., Simenstad, C. A., and Estes, J. A. 1989. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:170173.CrossRefGoogle ScholarPubMed
Edmond, J. M. 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science 258:15941597.CrossRefGoogle ScholarPubMed
Erwin, D. H., and Vogel, T. A. 1992. Testing for causal relationships between large pyroclastic volcanic eruptions and mass extinctions. Geophysical Research Letters 19:893896.CrossRefGoogle Scholar
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. Jr. 1987. A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 41:11771186.CrossRefGoogle ScholarPubMed
Fischer, A. G. 1981. Climatic oscillations in the biosphere. Pp. 103131in Nitecki, M. H., ed. Biotic crises in ecological and evolutionary time. Academic Press, New York.CrossRefGoogle Scholar
Fischer, A. G. 1984. Biological innovations and the sedimentary record. Pp. 145157in Holland, H. D. and Trendall, A. F., eds. Patterns of change in earth evolution. Springer, Berlin.CrossRefGoogle Scholar
Fischer, A. G. 1985. The two Phanerozoic supercycles. Pp. 129150in Berggren, W. A. and Van Couvering, J. A., eds. Catastrophes in earth history: the new Uniformitarianism. Princeton University Press.Google Scholar
Fischer, A. G., and Arthur, M. A. 1977. Secular variations in pelagic realm. Pp. 1950in Cook, H. E. and Enos, P., eds. Deep-water carbonate environments. Society for Economic Paleontologists and Mineralogists Special Publication 25.Google Scholar
Foote, M. 1992. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Sciences, USA 89:73257329.CrossRefGoogle ScholarPubMed
Froelich, P. N. 1993. Ruling in the improbable. Nature (London) 363:585587.CrossRefGoogle Scholar
Froelich, P. N., Bender, M. L., Luedtke, N. A., Heath, G. R., and DeVries, T. 1982. The marine phosphorus cycle. American Journal of Science 282:474511.CrossRefGoogle Scholar
Garzanti, E. 1993. Himalayan ironstones, “superplumes,” and the breakup of Gondwana. Geology 21:105108.2.3.CO;2>CrossRefGoogle Scholar
Glazier, D. S. 1987. Energetics and taxonomic patterns of species diversity. Systematic Zoology 36:6271.CrossRefGoogle Scholar
Gould, S. J. 1982. Darwinism and the expansion of evolutionary theory. Science 216:380387.CrossRefGoogle ScholarPubMed
Gould, S. J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology 11:212.CrossRefGoogle Scholar
Grassle, J. F. 1985. Hydrothermal vent animals: distribution and biology. Science 229:713717.CrossRefGoogle ScholarPubMed
Hallam, A. 1981a. Relative importance of plate movements, eustasy, and climate in controlling major biogeographical changes since the early Mesozoic. Pp. 303340in Nelson, G. and Rosen, D. F., eds. Vicariance biogeography: a critique. Columbia University Press, New York.Google Scholar
Hallam, A. 1981b. Facies interpretation and the stratigraphic record. W. H. Freeman, Oxford.Google Scholar
Hallam, A. 1991. Why was there a delayed radiation after the end-Palaeozoic extinctions? Historical Biology 5:257262.CrossRefGoogle Scholar
Hallam, A. 1992. Phanerozoic sea-level changes. Columbia University Press, New York.Google Scholar
Hallock, P. 1987. Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2:457471.CrossRefGoogle Scholar
Hallock, P., and Schlager, W. 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389398.CrossRefGoogle Scholar
Handler, P. 1989. The effect of volcanic aerosols on global climate. Journal of Volcanology and Geothermal Research 37:233249.CrossRefGoogle Scholar
Hansen, T.A., Farrell, B. R., and Upshaw, B. III. 1993. The first two million years after the Cretaceous-Teritary boundary in east Texas: rate and paleoecology of the molluscan recovery. Paleobiology 19:251265.CrossRefGoogle Scholar
Hill, R. I., Campbell, I. H., Davies, G. F., and Griffiths, R. W. 1992. Mantle plumes and continental tectonics. Science 256:186193.CrossRefGoogle ScholarPubMed
Hoffman, A. 1989. Arguments on evolution: a paleontologist's perspective. Oxford University Press, New York.Google Scholar
Holland, H. D. 1984. The chemical evolution of the atmosphere and oceans. Princeton University Press.CrossRefGoogle Scholar
Hooper, P. R. 1990. The timing of crustal extension and the eruption of continental flood basalts. Nature (London) 345:246249.CrossRefGoogle Scholar
Horn, H. S. 1971. The adaptive geometry of trees. Princeton University Press.Google Scholar
Horodyski, R. J., and Knauth, L. P. 1994. Life on land in the Precambrian. Science 263:494498.CrossRefGoogle ScholarPubMed
Hovan, A., and Rea, D. K. 1992. Paleocene-Eocene boundary changes in atmospheric and oceanic circulation: a southern hemisphere record. Geology 20:1518.2.3.CO;2>CrossRefGoogle Scholar
Hsu, K. J., Oberhänsli, H., Gao, J. Y., Shu, S., Haiphong, C., and Krähenbühl, U. 1985. “Strangelove ocean” before the Cambrian explosion. Nature (London) 316:809811.CrossRefGoogle Scholar
Huff, W. D., Bergstrom, S. M., and Kolata, D. R. 1992. Giant Ordovician volcanic ash fall in North America and Europe: biological, tectonomagmatic, and event-stratigraphic significance. Geology 20:875878.2.3.CO;2>CrossRefGoogle Scholar
Huston, M. A. 1993. Biological diversity, soils, and economics. Science 262:16761680.CrossRefGoogle ScholarPubMed
Ingram, B. L., Coccioni, R., Montanari, A., and Richter, F. M. 1994. Strontium isotopic composition of mid-Cretaceous seawater. Science 264:546550.CrossRefGoogle ScholarPubMed
Jablonski, D. 1993. The tropics as a source of evolutionary novelty through geological time. Nature (London) 364:142144.CrossRefGoogle Scholar
Jablonski, D., and Bottjer, D. J. 1990. Onshore-offshore trends in marine invertebrate evolution. Pp. 2145in Ross, R. M. and Allmon, W. B., eds. Causes of evolution: a paleontological perspective. University of Chicago Press.Google Scholar
Jablonski, D., and Bottjer, D. J. 1991. Environmental patterns in the origins of higher taxa: the post-Paleozoic fossil record. Science 252:18311833.CrossRefGoogle ScholarPubMed
Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science 222:11231125.CrossRefGoogle ScholarPubMed
Jablonski, D., Flessa, K., and Valentine, J. W. 1985. Biogeography and paleobiology. Paleobiology 11:7590.CrossRefGoogle Scholar
Jackson, J. B. C., and McKinney, F. K. 1990. Ecological processes and progressive macroevolution of marine clonal benthos. Pp. 173209in Ross, R. M. and Allmon, W. B., eds. Causes of evolution: a paleontological perspective. University of Chicago Press.Google Scholar
Jannasch, H. W., and Mottl, M. J. 1985. Geomicrobiology of deep-sea hydrothermal vents. Science 229:717725.CrossRefGoogle ScholarPubMed
Jenkyns, H. C. 1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society of London 137:171188.CrossRefGoogle Scholar
Kauffman, S. A. 1989. Cambrian explosion and Permian quiescence: implications for rugged fitness landscapes. Evolutionary Ecology 3:274281.CrossRefGoogle Scholar
Kearsley, M. J. C., and Witham, T. G. 1992. Guns and butter: a no cost defense against predation for Chysomela confluens. Oecologia (Berlin) 93:556562.CrossRefGoogle Scholar
Kemp, A. E. S., and Baldauf, J. G. 1993. Vast Neogene laminated diatom mat deposits from the eastern tropical Pacific Ocean. Nature (London) 362:141144.CrossRefGoogle Scholar
Kennett, J. P, and Stott, L. D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature (London) 353:225229.CrossRefGoogle Scholar
Kennett, J. P., and Thunell, R. C. 1975. Global increase in Quaternary explosive volcanism. Science 187:497502.CrossRefGoogle ScholarPubMed
Kerrick, D., and Caldeira, K. 1994. Post-125 Ma carbon storage associated with continent-continent collision: comment. Geology 22:381382.2.3.CO;2>CrossRefGoogle Scholar
Kitchell, J. A., Clark, D. L., and Gombos, A. M. 1986. Biological selectivity of extinction: a link between background and mass extinction. Palaios 1:504511.CrossRefGoogle Scholar
Knoll, A. H. 1992. The early evolution of eukaryotes: a geological perspective. Science 256:622627.CrossRefGoogle ScholarPubMed
Knoll, A. H., Fairchild, I. J., and Swett, K. 1993. Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic/Cambrian transition. Palaios 8:512525.CrossRefGoogle ScholarPubMed
Knoll, M. A., and James, W. C. 1987. Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time. Geology 15:10991102.2.0.CO;2>CrossRefGoogle Scholar
Koch, P. L., Zachos, J. C., and Gingerich, P. D. 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene/Eocene boundary. Nature (London) 358:319322.CrossRefGoogle Scholar
Labandeira, C. C., and Sepkoski, J. J. Jr. 1993. Insect diversity in the fossil record. Science 261:310315.CrossRefGoogle ScholarPubMed
Larson, R. L. 1991a. Latest pulse of earth: evidence for a mid-Cretaceous superplume. Geology 19:547550.2.3.CO;2>CrossRefGoogle Scholar
Larson, R. L. 1991b. Geological consequences of superplumes. Geology 19:963966.2.3.CO;2>CrossRefGoogle Scholar
Latham, R. E., and Ricklefs, R. E. 1993. Continental comparisons of temperate-zone tree species diversity. Pp. 294314in Ricklefs, and Schluter, 1993.Google Scholar
Leggett, J. K. 1980. British Lower Palaeozoic black shales and their palaeo-oceanographic significance. Journal of the Geological Society of London 137:139156.CrossRefGoogle Scholar
Levinton, J. S. 1974. Trophic group and evolution in bivalve molluscs. Palaeontology 17:579585.Google Scholar
Loper, D. E., and McCartney, K. M. 1988. A model of correlated episodicity in magnetic-field reversals, climate, and mass extinctions. Journal of Geology 96:115.CrossRefGoogle Scholar
MacArthur, R. H., and Wilson, E. O. 1967. The theory of island biogeography. Princeton University Press.Google Scholar
Maliva, R. G., Knoll, A. H., and Siever, R. 1990 (1989). Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios 5:519532.Google Scholar
Marsh, J. A. Jr. 1977. Terrestrial inputs of nitrogen and phosphorus on fringing reefs of Guam. Proceedings of the Third Coral Reef Symposium pp. 331336.Google Scholar
Martin, J. H., Gordon, R. M., and Fitzwater, S. E. 1990. Iron in Antarctic waters. Nature (London) 345:156158.CrossRefGoogle Scholar
McAlester, A. L. 1970. Animal extinctions, oxygen atmospheric history. Journal of Paleontology 44:405409.Google Scholar
McGowan, J. A, and Walker, P. A. 1993. Pelagic diversity patterns. Pp. 203214in Ricklefs, and Schluter, 1993.Google Scholar
McLean, D. M. 1985. Mantel degassing induced dead ocean in the Cretaceous-Tertiary transition. Geophysical Monographs 32:493503.Google Scholar
McLennan, S. M. 1993. Weathering and global denudation. Journal of Geology 101:295303.CrossRefGoogle Scholar
Melillo, J. M., McGuire, M. D., Kicklighter, D. W., Moore, B. III, Vorosmarty, C. J., and Schloss, A. L. 1993. Global climate change and terrestrial net primary production. Nature (London) 363:234240.CrossRefGoogle Scholar
Mokyr, J. 1990. The lever of riches: technological creativity and economic progress. Oxford University Press, New York.Google Scholar
Morel, B. M. M., Reinfelder, J. R., Roberts, S. B., Chamberlain, P., Lee, J. G., and Yee, D. 1994. Zinc and carbon co-limitation of marine phytoplankton. Nature (London) 369:740742.CrossRefGoogle Scholar
Mount, J. F., and Signor, P. W. 1992. Faunas and facies—fact and artifact: on the distribution of Early Cambrian faunas. Pp. 2751in Lipps, J. H. and Signor, P. W., eds. Origin and early evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Murray, J. W., Barber, R. T., Roman, M. R., Bacon, M. B., and Feely, R. A. 1994. Physical and biological controls on carbon cycling in the equatorial Pacific. Science 266:5865.CrossRefGoogle ScholarPubMed
Nance, R. D., Worsley, T. R., and Moody, J. B. 1986. Post-Archean biogeochemical cycles and long-term episodicity in tectonic processes. Geology 14:514518.2.0.CO;2>CrossRefGoogle Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1983. Patterns in vascular land plant diversification. Nature (London) 303:614616.CrossRefGoogle Scholar
Odum, E. P. 1969. Strategy of ecosystem development. Science 164:162170.Google ScholarPubMed
Officer, C. B., and Drake, C. L. 1983. The Cretaceous-Tertiary transition. Science 219:13831390.CrossRefGoogle ScholarPubMed
Officer, C. B., and Drake, C. L. 1985. Terminal Cretaceous environmental events. Science 277:11611167.CrossRefGoogle Scholar
Officer, C. B., Hallam, A., Drake, L., and Devine, J. D. 1987. Late Cretaceous and paroxysmal Cretaceous/Tertiary extinctions. Nature (London) 326:143149.CrossRefGoogle Scholar
Parrish, J. T. 1987. Palaeo-upwelling and the distribution of organic-rich rocks. Pp. 199205in Brooks, J. and Fleet, A. J., eds. Marine petroleum source rocks. Geological Society Special Publication 26.Google Scholar
Paul, C. R. C., and Mitchell, S. F. 1994. Is famine a common factor in marine mass extinctions? Geology 22:679682.2.3.CO;2>CrossRefGoogle Scholar
Podolsky, R. D. 1994. Temperature and water viscosity: physiological versus mechanical effects on suspension feeding. Science 265:100103.CrossRefGoogle ScholarPubMed
Pomeroy, L. R. 1970. The strategy of mineral cycling. Annual Review of Ecology and Systematics 1:171190.CrossRefGoogle Scholar
Pough, F. H. 1980. The advantage of ectothermy for tetrapods. American Naturalist 115:92112.CrossRefGoogle Scholar
Powell, C. M., Li, Z. X., McElhinny, M. W., Meert, J. G., and Park, J. K. 1993. Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana. Geology 21:889892.2.3.CO;2>CrossRefGoogle Scholar
Prentice, I. C. 1993. Process and production. Nature (London) 363:208210.CrossRefGoogle Scholar
Rampino, M. R., and Caldeira, K. 1993. Major episodes of geologic change: correlations, time structure and possible causes. Earth and Planetary Science Letters 110:215227.CrossRefGoogle Scholar
Rampino, M. R., and Self, S. 1992. Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature (London) 359:5052.CrossRefGoogle Scholar
Rampino, M. R., and Stothers, R. B. 1988. Flood basalt volcanism during the past 250 million years. Science 241:663668.CrossRefGoogle ScholarPubMed
Rampino, M. R., Self, S., and Fairbridge, R. W. 1979. Can rapid climatic change cause volcanic eruptions? Science 206:826828.CrossRefGoogle ScholarPubMed
Raup, D. M., and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences, U.S.A. 81:801805.CrossRefGoogle ScholarPubMed
Raven, J. A. 1993. Limits on growth rates. Nature (London) 361:209210.CrossRefGoogle Scholar
Raymo, M. E., and Ruddiman, W. F. 1992. Tectonic forcing of Late Cenozoic climate. Nature (London) 359:117122.CrossRefGoogle Scholar
Rea, D. K. 1994. The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind. Reviews of Geophysics 32:159195.CrossRefGoogle Scholar
Rea, D. K., Zachos, J. C., Owen, R. M., and Gingerich, P. D. 1990. Global change at the Paleocene-Eocene boundary: climatic and evolutionary consequences of tectonic events. Palaeogeography, Palaeoclimatology, Palaeoecology 79:117128.CrossRefGoogle Scholar
Renne, P. R., and Basu, A. R. 1991. Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary. Science 253:176179.CrossRefGoogle ScholarPubMed
Renne, P. R., Ernesto, M., Pacca, I. G., Coe, R. S., Glen, J. M., Prevot, M., and Perrin, M. 1992. The age of Parana flood volcanism, rifting of Gondwanaland, and the Jurassic-Cretaceous boundary. Science 259:975979.CrossRefGoogle Scholar
Rex, M. A., Stuart, C. T., Hessler, R. R., Allen, J. A., Sanders, H. L., and Wilson, G. D. F. 1993. Global-scale latitudinal patterns of species diversity in the deep-sea benthods. Nature (London) 365:636639.CrossRefGoogle Scholar
Rhodes, M. C., and Thayer, C. W. 1991. Mass extinctions, ecological selectivity and primary production. Geology 19:877880.2.3.CO;2>CrossRefGoogle Scholar
Richards, M. A., Jones, D. L., Duncan, R. A., and DePaolo, D. J. 1991. A mantle-plume initiation model for the Wrangellia flood basalt and other oceanic plateaus. Science 254:263267.CrossRefGoogle ScholarPubMed
Richter, F. M., Rowley, D. B., and DePaolo, D. J. 1992. Sr isotope evolution of seawater: the role of tectonics. Earth and Planetary Science Letters 109:1123.CrossRefGoogle Scholar
Ricklefs, R. E., and Latham, R. E. 1993. Global patterns of diversity in mangrove floras. Pp. 215229in Ricklefs, and Schluter, 1993.Google Scholar
Ricklefs, R. E., and Schluter, D. 1993. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press.Google Scholar
Riebessel, U., Wolf-Gladrow, D. A., and Smetacek, V. 1993. Carbon dioxide limitation of marine phytoplankton growth rates. Nature (London) 361:249251.CrossRefGoogle Scholar
Riggs, S. R. 1984. Paleoceanographic model of Neogene phosphorite deposition, U.S. Atlantic continental margin. Science 223:123131.CrossRefGoogle ScholarPubMed
Robinson, J. M. 1990. The burial of organic carbon as affected by the evolution of land plants. Historical Biology 3:189201.CrossRefGoogle Scholar
Rosenzweig, M. L., and Abramski, S. 1993. How are diversity and productivity related? Pp. 5265in Ricklefs, and Schluter, 1993.Google Scholar
Runnegar, B. 1982. Oxygen requirements, biology and phylogenetic significance of the Late Precambrian worm Dickinsonia, and the evolution of the burrowing habit. Alcheringa 6:223239.CrossRefGoogle Scholar
Sager, W. W., and Han, H.-C. 1993. Rapid formation of the Shatsky Rise Oceanic Plateau inferred from its magnetic anomaly. Nature (London) 364:610613.CrossRefGoogle Scholar
Sancetta, C. 1992. Primary production in the glacial North Atlantic and North Pacific Oceans. Nature (London) 360:249251.CrossRefGoogle Scholar
Schopf, T. J. M. 1974. Permo-Triassic extinctions: relation to sea-floor spreading. Journal of Geology 82:129143.CrossRefGoogle Scholar
Schopf, T. J. M. 1980. Paleoceanography. Harvard University Press, Cambridge.CrossRefGoogle Scholar
Sellwood, B. W., Price, G. D., and Valdes, P. J. 1994. Cooler estimates of Cretaceous temperatures. Nature (London) 370:453455.CrossRefGoogle Scholar
Selverstone, J., and Gutzler, D. S. 1993. Post-125 Ma carbon storage associated with continent-continent collision. Geology 21:885888.2.3.CO;2>CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1976. Species diversity in the Phanerozoic: species-area effects. Paleobiology 2:298303.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1990. The taxonomic structure of periodic extinction. Geological Society of America Special Paper 247:3344.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1993. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:4351.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr., and Sheehan, P. M. 1983. Diversification, faunal change, and community replacement during the Ordovician radiations. Pp. 673717in Tevesz, and McCall, 1983.Google Scholar
Shear, W. A. 1991. The early development of terrestrial ecosystems. Nature (London) 351:283289.CrossRefGoogle Scholar
Sheehan, P. M. 1988. Late Ordovician events and the terminal Ordovician extinction. New Mexico Bureau of Mines and Mineral Resources Memoir 44:405415.Google Scholar
Sheehan, P. M., and Hansen, T. A. 1986. Detritus feeding as a buffer to extinction at the end of the Cretaceous. Geology 14:868870.2.0.CO;2>CrossRefGoogle Scholar
Sheldon, R. P. 1981. Ancient marine phosphorites. Annual Review of Earth and Planetary Sciences 9:251284.CrossRefGoogle Scholar
Shoji, S., Nanzyo, M., and Dahlgren, R. 1993. Volcanic ash soils: genesis, properties and utilization. Elsevier, Amsterdam.Google Scholar
Signor, P. W. 1990. The geologic history of diversity. Annual Review of Ecology and Systematics 21:509539.CrossRefGoogle Scholar
Signor, P. W. 1991. Early Cambrian biogeography and the prehistory of early skeltogenous animals. Pp. 801810in Cooper, J. D. and Stevens, C. H., eds. Paleozoic paleogeography of the western United States—II. Pacific Section. Society of Economic Paleontologists and Mineralogists 67.Google Scholar
Signor, P. W. III, and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229245.CrossRefGoogle Scholar
Signor, P. W., and Vermeij, G. J. 1994. The plankton and the benthos: origins and early history of an evolving relationship. Paleobiology 20:297319.CrossRefGoogle Scholar
Sigurdsson, H. 1990. Assessment of the atmospheric impact of volcanic eruptions. Geological Society of America Special Paper 247:99110.CrossRefGoogle Scholar
Stanley, S. M. 1975. A theory of evolution above the species level. Proceedings of the National Academy of Sciences, U.S.A. 72:646650.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1979. Macroevolution: pattern and process. W. H. Freeman, San Francisco.Google Scholar
Stanley, S. M. 1984. Temperature and biotic crises in the marine realm. Geology 22:205208.2.0.CO;2>CrossRefGoogle Scholar
Stanley, S. M. 1990. Delayed recovery and the spacing of major extinctions. Paleobiology 16:401414.CrossRefGoogle Scholar
Sterrer, W. 1992. Prometheus and Proteus: the creative, unpredictable individual in evolution. Evolution and Cognition 1:101129.Google Scholar
Strong, D. R. 1992. Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73:747754.CrossRefGoogle Scholar
Sullivan, C. W., Arigo, K. R., McClain, C. R., Comisco, J. C., and Firestone, J. 1993. Distributions of phytoplankton blooms in the southern ocean. Science 262:18321837.CrossRefGoogle ScholarPubMed
Tarduno, J. A., Sliter, W. V., Kroenke, L., Leckie, M., Mayer, H., Mahoney, J. J., Musgrave, R., Storey, M., and Winterer, E. L. 1991. Rapid formation of Ontong Java Plateau by Aptian mantle plume volcanism. Science 254:399403.CrossRefGoogle ScholarPubMed
Tardy, Y., N'Kounkou, R., and Probst, J.-L. 1989. The global water cycle and continental erosion during Phanerozoic time (570 my). American Journal of Science 289:455483.CrossRefGoogle Scholar
Tevesz, M. J. S., and McCall, P. L. 1983. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625in Tevesz, and McCall, 1983.Google Scholar
Thayer, C. W. 1986. Are brachiopods better than bivalves? Mechanisms of turbidity tolerance and their interaction with feeding in articulates. Paleobiology 12:161174.CrossRefGoogle Scholar
Thierstein, H. R. 1989. Inventory of paleoproductivity records: the mid-Cretaceous enigma. Pp. 355375in Berger, et al. 1989.Google Scholar
Tiffney, B. H., and Niklas, K. J. 1990. Continental area, dispersion, latitudinal distribution, and topographic variety: a test of correlation with terrestrial plant diversity. Pp. 76102in Ross, R. M. and Allmon, W. B., eds. Causes of evolution: a paleontological perspective. University of Chicago Press.Google Scholar
Umbgrove, J. H. F. 1947. The pulse of the earth, 2d ed.Martinus Nijhoff, The Hague.CrossRefGoogle Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Paleontology 12:684709.Google Scholar
Valentine, J. W. 1971a. Plate tectonics and shallow marine diversity and endemisim: an actualistic model. Systematic Zoology 20:253264.CrossRefGoogle Scholar
Valentine, J. W. 1971b. Resource supply and species diversity patterns. Lethaia 4:5161.CrossRefGoogle Scholar
Valentine, J. W., and Jablonski, D. 1982. Major determinants of the biogeographic pattern of the shallow-sea fauna. Bulletin de la Société Géologique de France (7)24:893899.CrossRefGoogle Scholar
Valentine, J. W., and Jablonski, D. 1991. Biotic effects of sea level change: the Pleistocene test. Journal of Geophysical Research 96:68736878.CrossRefGoogle Scholar
Valentine, J. W., Awramik, S. M., Signor, P. W., and Sadler, P. M. 1991. The biological explosion at the Precambrian-Cambrian boundary. Evolutionary Biology 25:279356.Google Scholar
Van Valen, L. 1975. Group selection, sex, and fossils. Evolution 29:8793.CrossRefGoogle ScholarPubMed
Van Valen, L. 1976. Energy and evolution. Evolutionary Theory 1:179229.Google Scholar
Van Valkenburgh, B., and Janis, C. M. 1993. Historical diversity patterns in North American large herbivores and carnivores. Pp. 330340in Ricklefs, and Schluter, 1993.Google Scholar
Veevers, J. J. 1989. Middle/Late Triassic (230 ± 5 Ma) singularity in the stratigraphic and magmatic history of the Pangean heat anomaly. Geology 17:784787.2.3.CO;2>CrossRefGoogle Scholar
Veevers, J. J. 1990. Tectonic-climatic supercycle in the billion-year plate-tectonic eon: Permiam pangean icehouse alternates with Cretaceous dispersed-continents greenhouse. Sedimentary Geology 58:116.CrossRefGoogle Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology 3:245258.CrossRefGoogle Scholar
Vermeij, G. J. 1978. Biogeography and adaptation: patterns of marine life. Harvard University Press, Cambridge.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press.CrossRefGoogle Scholar
Vermeij, G. J. 1989a. Evolution in the long run. Paleobiology 15:199203.CrossRefGoogle Scholar
Vermeij, G. J. 1989b. Geographical restriction as a guide to the causes of extinction: the case of the cold northern oceans during the Neogene. Paleobiology 15:335356.CrossRefGoogle Scholar
Vermeij, G. J. 1990 (1989). The origin of skeletons. Palaios 5:585589.Google Scholar
Vermeij, G. J. 1993. A natural history of shells. Princeton University Press.Google Scholar
Vermeij, G. J. 1994. The evolutionary interaction among species: selection, escalation, and coevolution. Annual Reviews of Ecology and Systematics 25:219236.CrossRefGoogle Scholar
Vogelmann, A. M., Ackerman, T. P., and Turco, R. P. 1992. Enhancements in biologically effective ultraviolet radiation following volcanic eruptions. Nature (London) 359:4749.CrossRefGoogle ScholarPubMed
Vogt, P. R. 1989. Volcanogenic upwelling of anoxic, nutrientrich water: a possible factor in carbonate-bank/reef demise and benthic faunal extinctions? Geological Society of America Bulletin 101:12251245.2.3.CO;2>CrossRefGoogle Scholar
Walsh, J. J. 1988. On the nature of continental shelves. Academic Press, San Diego.Google Scholar
Weems, R. E. 1992. The “terminal Triassic catastrophic extinction event” in perspective: a review of Carboniferous through Early Jurassic terrestrial vertebrate extinction patterns. Palaeogeography, Palaeoclimatology, Palaeoecology 94:129.CrossRefGoogle Scholar
White, T. C. R. 1978. The importance of a relative shortage of food in animal ecology. Oecologia (Berlin) 33:7186.CrossRefGoogle ScholarPubMed
Wignall, P., and Hallam, A. 1992. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology 93:2146.CrossRefGoogle Scholar
Wilde, P., and Berry, W. B. N. 1984. Destabilization of the oceanic density structure and its significance to marine “extinction” events. Palaeogeography, Palaeoclimatology, Palaeoecology 48:143162.CrossRefGoogle Scholar
Wise, K. P., and Schopf, T. J. M. 1981. Was marine faunal diversity in the Pleistocene affected by changes in sea level? Paleobiology 7:394399.CrossRefGoogle Scholar
Worsley, T. R., Moody, J. B., and Nance, R. D. 1985. Proterozoic to Recent tectonic tuning of biogeochemical cycles. Geophysical Monographs 32:561572.Google Scholar
Wright, D. H. 1983. Species-energy theory: an extension of species-area theory. Oikos 41:496506.CrossRefGoogle Scholar
Wright, D. H., Currie, J., and Maurer, B. A. 1993. Energy supply and patterns of species richness on local and regional scales. Pp. 6674in Ricklefs, and Schluter, 1993.Google Scholar
Yapp, C. J., and Poths, H. 1994. Productivity of pre-vascular continental biota inferred from the Fe(CO3)OH content of goethite. Nature (London) 368:4951.CrossRefGoogle Scholar
Yingst, J. Y., and Rhoads, D. C. 1980. The role of bioturbation in the enhancement of bacterial growth rates in marine sediments. Pp. 407421in Tenore, K. R. and Coull, B. C., eds. Marine benthic dynamics. University of South Carolina Press, Columbia.Google Scholar
Zachos, J. C., Lohman, K. C., Walker, J. C. G., and Wise, S. W. 1993. Abrupt climate change and transient climate during the Paleogene: a marine perspective. Journal of Geology 101:191213.CrossRefGoogle ScholarPubMed