Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T00:55:27.390Z Has data issue: false hasContentIssue false

Adaptive radiation of the comatulid crinoids

Published online by Cambridge University Press:  08 April 2016

David L. Meyer
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221
Donald B. Macurda Jr.
Affiliation:
Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48104

Abstract

Modern crinoids are dominated by the comatulids (unstalked forms) which range from the intertidal to abyssal depths. Modern stalked crinoids are restricted to depths greater than about 100 m. In the geologic past some stalked crinoids lived at depths of a few tens of meters or less in reef and bank environments. The primary vehicles postulated for the post-Triassic radiation of comatulids are lack of permanent fixation to the substratum and the capacity for mobility. Development of complex muscular articulations has enabled crawling or swimming which serve in habitat selection and avoidance of stress and predators. These and other adaptations may have bestowed on comatulids a higher survival capacity in shallow-water environments compared to stalked crinoids. Modern stalked crinoids lack mobility and complex behavioral adaptations seen in comatulids. Possibly, stalked crinoids in shallow water were unable to cope with the radiation of abundant, predaceous bony fishes in the late Mesozoic and became restricted to greater depths while the more adaptable comatulids gained ascendancy in shallow water.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Angelin, N. P. 1878. Iconographia Crinoideorum in Stratis Sueciae Siluricis Fossilium. Regia Academia Scientiarum Sueccia. 63 pp. 29 pls. Holmiae; Stockholm.Google Scholar
Bambach, R. K. 1975. What is the pattern of change in species diversity with time? Geol. Soc. Am., Abstr. with Program Annu. Meet. 7:987988.Google Scholar
Cain, J. D. B. 1968. Aspects of the depositional environment and palaeoecology of crinoidal limestones. Scottish J. Geol. 4:191208.CrossRefGoogle Scholar
Clark, A. H. 1915. A monograph of the existing crinoids. Bull. U. S. Nat. Mus., no. 82 1, Pt. 1, 406 pp.Google Scholar
Clark, A. H. 1921. A monograph of the existing crinoids. Bull. U. S. Nat. Mus., no. 82 1, Pt. 2, 795 pp.Google Scholar
Clark, A. H. 1931. A monograph of the existing crinoids. Bull. U. S. Nat. Mus., no. 82 1, Pt. 3, 815 pp.Google Scholar
Clark, A. H. 1941. A monograph of the existing crinoids. Bull. U. S. Nat. Mus., no. 82 1, Pt. 4a, 603 pp.Google Scholar
Clark, A. H. 1947. A monograph of the existing crinoids. Bull. U. S. Nat. Mus., no. 82 1, Pt. 4b, 473 pp.Google Scholar
Clark, A. H. 1950. A monograph of the existing crinoids. Bull. U. S. Nat. Mus., no. 82 1, Pt. 4c, 383 pp.Google Scholar
Clark, A. H., and Clark, A. M. 1967. A monograph of the existing crinoids. Bull. U. S. Nat. Mus., no. 82 1, Pt. 5, 860 pp.Google Scholar
Clark, A. M., and Rowe, F. W. E. 1971. Monograph of Shallow-water Indo-West Pacific Echinoderms. 238 pp. Brit. Mus. Nat. Hist.; London.Google Scholar
Clark, H. L. 1915. The comatulids of Torres Strait: with special reference to their habits and reactions. Paper Dept. Mar. Biol., Carnegie Inst. Wash. 8:97125.Google Scholar
Columna, Fabio. 1592. Phytobasanos, sive Plantarium Historia. Accessit Piscium aliquot Historia. Naples.Google Scholar
Fell, H. B. 1971. Crinoids and the dawn of deepsea research. Fauna. 3:413.Google Scholar
Fell, H. B., and Moore, R. C. 1966. General features and relationships of echinozoans. pp. 108118. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology. Pt. U, Echinodermata 3. 366 pp.University of Kansas Press; Lawrence, Kansas.Google Scholar
Fishelson, Lev. 1969. Gamete shedding behaviour of the feather-star Lamprometra klunzingeri in its natural habitat. Nature. 218:1063.Google Scholar
Francis, E. H., and Woodland, Q. W. 1964. The Carboniferous period. pp. 221232. In: Harland, W. B., Smith, A. G., and Wilcock, B., eds. The Phanerozoic Time-scale. A Symposium. 458 pp.Geol. Soc. London; London.Google Scholar
Fricke, H. W. 1966. Der Nahrungserwerb des Gorgonenhaupter Astroboa nuda (Lyman). Nat. Mus. Frankf. 96:501510.Google Scholar
Gislèn, Tørsten. 1924. Echinoderm studies. Zool. Bidr. Uppsala. 9:1316.Google Scholar
Gross, M. G. 1972. Oceanography. A View of the Earth. 581 pp. Prentice-Hall; Englewood Cliffs, New Jersey.Google Scholar
Guettard, Jean. 1761. Memoire sur les Encrinites et les pierres etoilees, dans lequel on traitera aussi des Entroques. Mems. de l'Acad. des Sciences de Paris l'An 1755 (published 1761). pp. 224et seq.; 318 et seq.Google Scholar
Haude, R. 1972. Bau und Funktion der Scyphocrinites—Lobolithen. Lethaia 5:95125.CrossRefGoogle Scholar
Heezen, B. C., and Hollister, C. G. 1971. The Face of the Deep. 659 pp. Oxford University Press; New York.Google Scholar
Hess, Hans. 1972. Eine Echinodermen-Fauna aus dem mittleren Dogger des Aargauer Juras. Schweizerische Paläontol. Abhandl. 92:187.Google Scholar
Hobson, E. S. 1975. Feeding patterns among tropical reef fishes. Am. Sci. 63:382392.Google Scholar
Kirk, E. 1911. The structure and relationships of certain eleutherozoic Pelmatozoa. Proc. U. S. Natl. Mus. 41:1137.CrossRefGoogle Scholar
Lane, N. G. 1963. The Berkeley crinoid collection from Crawfordsville, Indiana. J. Paleontol. 37:10011008.Google Scholar
Lane, N. G. 1971. Crinoids and reefs. pp. 14301443. In: Reef Organisms Through Time. Part J. Proc. N. Am. Paleontol. Convention. Allen Press; Lawrence, Kansas.Google Scholar
Lane, N. G. 1973. Paleontology and paleoecology of the Crawfordsville fossil site (Upper Osagian: Indiana). Univ. Cal. Publ. Geol. Sci. 99:1141.Google Scholar
Lane, N. G., and Macurda, D. B. Jr. 1975. New evidence for muscular articulations in Paleozoic crinoids. Paleobiology. 1:5962.CrossRefGoogle Scholar
Laudon, L. R. 1957. Crinoids. pp. 961972. In: Ladd, H. S., ed. Treatise on Marine Ecology and Paleoecology. Geol. Soc. Am. Mem. 67, 2.Google Scholar
Levinton, J. S. 1973. Trophic group and evolution. Geol. Soc. Am., Abstr. with Program Annu. Meet. 5:712713.Google Scholar
Macurda, D. B. Jr. 1973. Ecology of comatulid crinoids at Grand Bahama Island. Hydro-Lab J. 2:924.Google Scholar
Macurda, D. B. Jr. 1975. The bathymetry and zoogeography of shallow-water crinoids in the Bahama Islands. Hydro-Lab J. 3:524.Google Scholar
Macurda, D. B. Jr. and Meyer, D. L. 1974. The feeding posture of modern stalked crinoids (Echinodermata). Nature. 247:394396.CrossRefGoogle Scholar
Macurda, D. B. Jr. and Meyer, D. L. 1975. The microstructure of the crinoid endoskeleton. Univ. Kans. Paleontol. Contrib. Paper. 74:122.Google Scholar
Macurda, D. B. Jr. and Meyer, D. L. 1976. The identification and interpretation of stalked crinoids (Echinodermata) from deep-water photographs. Bull. Mar. Sci. 26:205215.Google Scholar
Magnus, D. B. E. 1963. Der Federstern Heterometra savignyi im Roten Meer. Nat. Mus. Frankf. 93:355394.Google Scholar
Manten, A. A. 1971. Silurian Reefs of Gotland. 539 pp. Elsevier; Amsterdam.Google Scholar
Meyer, D. L. 1973a. Distribution and living habits of comatulid crinoids near Discovery Bay, Jamaica. Bull. Mar. Sci. 23:244259.Google Scholar
Meyer, D. L. 1973b. Feeding behavior and ecology of shallow-water unstalked crinoids (Echinodermata) in the Caribbean Sea. Mar. Biol. 22:105130.Google Scholar
Meyer, D. L., and Lane, N. G. 1976. The feeding biology of some Paleozoic crinoids and Recent basketstars. J. Paleontol. 50:472480.Google Scholar
Meyer, D. L., Messing, C. G., and Macurda, D. B. Jr. 1976. Zoogeography and bathymetric distribution of tropical western Atlantic Crinoidea (Echinodermata). Submitted to Bull. Mar. Sci.Google Scholar
Milliman, J. D. 1974. Marine Carbonates. 375 pp. Springer-Verlag; New York.Google Scholar
Moore, R. C. 1967. Unique stalked crinoids from Upper Cretaceous of Mississippi. Univ. Kans. Paleontol. Contrib. Paper. 17:135.Google Scholar
Moore, R. C., and Jeffords, R. M. 1968. Classification and nomenclature of fossil crinoids based on studies of dissociated parts of their columns. Univ. Kans. Paleontol. Contrib. Artic. 9:186.Google Scholar
Romer, A. S. 1966. Vertebrate Paleontology. 3rd ed.468 pp. Univ. of Chicago Press; Chicago, Ill.Google Scholar
Sars, Michael. 1868. Memoires pour servir a la connaissance des crinoides vivants. Programme de l'Universite royale de Norvege. pp. 165. 6 pls. Christiania.Google Scholar
Schwarzacher, W. 1963. Orientation of crinoids by current action. J. Sed. Petrol. 33:580586.Google Scholar
Seilacher, A., Drozdzewski, G., and Haude, R. 1968. Form and function of the stem in a pseudoplanktonic crinoid (Seirocrinus). Palaeontology. 11:275282.Google Scholar
Springer, F. 1926. American Silurian crinoids. Smithsonian Inst. Publ. 2871. 239 pp. Washington, D. C.CrossRefGoogle Scholar
Thurman, H. V. 1975. Introductory Oceanography. 441 pp. Merrill; Columbus, Ohio.Google Scholar
Van Sant, J. F., and Lane, N. G. 1964. Crawfordsville (Indiana) crinoid studies. Univ. Kans. Paleontol. Contrib. Artic. 7:1136.Google Scholar
Vermeij, G. J. 1974. Regional variations in tropical high intertidal gastropod assemblages. J. Mar. Res. 32:343357.Google Scholar
Wilson, J. L. 1975. Carbonate Facies in Geologic History. 471 pp. Springer-Verlag; New York.Google Scholar