Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T19:19:30.525Z Has data issue: false hasContentIssue false

The shape of evolution: a comparison of real and random clades

Published online by Cambridge University Press:  08 April 2016

Stephen Jay Gould
Affiliation:
Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
David M. Raup
Affiliation:
Department of Geological Sciences, University of Rochester, Rochester, N.Y. 14627
J. John Sepkoski Jr.
Affiliation:
Department of Geological Sciences, University of Rochester, Rochester, N.Y. 14627
Thomas J. M. Schopf
Affiliation:
Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637
Daniel S. Simberloff
Affiliation:
Department of Biology, Florida State University, Tallahassee, Florida 32306

Abstract

The history of life is replete with apparent order. Much of this order may reflect the deterministic causes conventionally invoked, but we cannot be sure until we measure and subtract the order that arises in simple random systems. Consequently, we have constructed a random model that builds evolutionary trees by allowing lineages to branch and become extinct at equal probabilities. We proceed by dividing our simulated tree into clades and by comparing their sizes and shapes with the patterns exhibited by “real” clades as recorded by fossils.

We regard the similarity of real and random clades as the outstanding result of this comparison. In both real and random systems, extinct clades arising after an “ecological barrel” had been filled have their maximum diversity at the midpoint of their duration; clades arising during the initial “filling” reach an earlier climax during this preequilibrial period of rapid diversification. However, some potential differences also emerge. Clades still living are much larger than extinct clades. We may attribute this to the morphological superiority of survivors, but we can also simulate it in a model that chooses the originators of clades at random. Real clades undergo greater fluctuations in diversity than do random clades, but the effect is not marked.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Emberger, L. 1968. Les plantes fossiles. Masson; Paris.Google Scholar
Glaessner, M. 1971. Geographic distribution and time range of the Ediacara Precambrian fauna. Geol. Soc. Am. Bull. 82:509514.CrossRefGoogle Scholar
Harland, W. B., et al. 1967. The Fossil Record. 827 pp. Geol. Soc. London.Google Scholar
Harland, W. B., Smith, A. G., and Wilcock, B. 1964. The Phanerozoic Time-Scale. 458 pp. Geological Soc. London.Google Scholar
Hupé, P. 1960. Sur le cambrien inférieur du Maroc. Int. Geol. Cong. 21st, Copenhagen, 1960, Rep. Pt. 8:7585.Google Scholar
Kukalova-Peck, J. 1973. A phylogenetic tree of the animal kingdom (including orders and higher categories). Nat. Mus. Can. Publ. Zool. 8:178.Google Scholar
Levins, R. 1968. Evolution in Changing Environments. 120 pp. Princeton Univ. Press; Princeton, N. J.CrossRefGoogle Scholar
Lochman-Balk, C. and Wilson, J. L. 1958. Cambrian biostratigraphy of North America. J. Paleontol. 32:312350.Google Scholar
MacArthur, R. H. and Wilson, E. O. 1967. The Theory of Island Biogeography. 203 pp. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
May, R. M. 1973. Stability and complexity in model ecosystems. 235 pp. Princeton Univ. Press; Princeton, N. J.Google ScholarPubMed
Moore, R. C., ed. 1955–1976. Treatise on Invertebrate Paleontology. (Numerous parts.)Geol. Soc. Am. and Univ. Kansas Press; Lawrence, Kansas.Google Scholar
Müller, A. H. 1961. Grossabläufe der Stammesgeschichte. 116 pp. Gustav Fischer; Jena.Google Scholar
Müller, A. H. 1974. Regelhafte und systemgebundene Verlagerung der Formenmaxima sich stammesgeschichtlich ablösender gleichrangiger Taxa. Biol. Zentralbl. 93:265288.Google Scholar
Orlov, Yu. A., ed. 1972. Osnovy Paleontologii. Izdat. Nauk.; Moscow.Google Scholar
Palmer, A. R. 1968. Cambrian trilobites of east central Alaska. U.S. Geol. Surv. Prof. Paper 559-B:2111.Google Scholar
Papenfuss, G. F. 1955. Classification of the algae. pp. 115224. In: A Century of Progress in the Natural Sciences. Cal. Acad. Sci.; San Francisco, Cal.Google Scholar
Piveteau, J., ed. 1953. Traité de Paléontologie. V. 3. 1063 pp. Masson; Paris.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science. 177:10651071.Google Scholar
Raup, D. M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiology. 1:333342.CrossRefGoogle Scholar
Raup, D. M. and Gould, S. J. 1974. Stochastic simulation and the evolution of morphology—towards a nomothetic paleontology. Syst. Zool. 23:305322.Google Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S. 1973. Stochastic models of phylogeny and the evolution of diversity. J. Geol. 81:525542.CrossRefGoogle Scholar
Small, J. 1945. Tables to illustrate the geological history of species-number in diatoms. Proc. R. Irish Acad. 50:295310.Google Scholar
Rozanov, A. Yu. 1967. The Cambrian lower boundary problem. Geol. Mag. 104:415434.CrossRefGoogle Scholar
Samsonowicz, J. 1956. Cambrian Paleogeography and the base of the Cambrian System in Poland. El Sistema Cambrico, Int. Geol. Cong., 20th, Mexico. pp. 127160.Google Scholar
Scagel, R. E., et al. 1965. An Evolutionary Survey of the Plant Kingdom. 658 pp. Wadsworth; Belmont, Cal.Google Scholar
Schopf, T. J. M., Raup, D. M., Gould, S. J., and Simberloff, D. S. 1975. Genomic versus morphologic rates of evolution: influence of morphologic complexity. Paleobiology. 1:6370.CrossRefGoogle Scholar
Simberloff, D. S. 1974. Equilibrium theory of island biogeography and ecology. Annu. Rev. Ecol. Syst. 5:161182.Google Scholar
Simpson, G. G. 1945. Principles of classification and a classification of the mammals. Bull. Am. Mus. Nat. Hist. 85:1350.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evol. Theory. 1:130.Google Scholar
Wilson, E. O. and Bossert, W. H. 1971. A Primer of Population Biology. 192 pp. Sinauer Associates; Stamford, Conn.Google Scholar
Zhuravleva, I. T. 1970. Marine faunas and Lower Cambrian stratigraphy. Am. J. Sci. 269:417445.Google Scholar