Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T10:46:24.409Z Has data issue: false hasContentIssue false

On the relationship of the myotome to the axial skeleton in vertebrate evolution

Published online by Cambridge University Press:  08 February 2016

George V. Lauder Jr.*
Affiliation:
The Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138

Abstract

The traditional belief that vertebrae must alternate in position with the segmented body musculature (myotomes) to allow bending of the axial skeleton is evaluated in terms of the patterns of development and structure of gnathostome vertebrae. The key functional parameter allowing lateral bending of the axial skeleton is the intersegmental position of both the neural and haemal arches, not the centrum. The intersegmental position of both the centrum and arches in tetrapods is the result of a secondary association of the centrum with the primary intersegmental position of the neural and haemal arches. The pattern of vertebral ontogeny and structure in primitive gnathostomes suggests that a causal link between sclerotomic resegmentation during amniote development and the presence of intersegmental vertebrae in the adult is spurious and corroborates the hypothesis that the process of resegmentation evolved as a method of redistributing large volumes of sclerotome cells during development. Patterns of vertebral construction in lower vertebrates are related to fast-start performance and the use of the body as a hybrid oscillator during locomotion.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andrews, S. M. 1977. The axial skeleton of the coelacanth, Latimeria. Pp. 271288. In: Problems in Vertebrate Evolution. Academic Press; London.Google Scholar
Andrews, S. M. and Westoll, T. S. 1970a. The postcranial skeleton of rhipidistian fishes excluding Eusthenopteron. Trans. R. Soc. Edinb. 68:381489.CrossRefGoogle Scholar
Andrews, S. M. and Westoll, T. S. 1970b. The postcranial skeleton of Eusthenopteron foordi Whiteaves. Trans. R. Soc. Edinb. 68:207329.CrossRefGoogle Scholar
Arey, L. B. 1974. Developmental Anatomy. 7th ed. revised.W. B. Saunders Co.; Philadelphia.Google Scholar
Balinsky, B. I. 1975. An Introduction to Embryology. 4th ed.W. B. Saunders Co.; Philadelphia.Google Scholar
Blight, A. R. 1977. The muscular control of vertebrate swimming movements. Biol. Rev. 52:181218.CrossRefGoogle Scholar
Farugi, A. J. 1935. The development of the vertebral column in the haddock (Gadus aeglefinus). Proc. Zool. Soc. Lond. 43:313332.Google Scholar
Francois, Y. 1966. Structure et développement de la vertèbre de Salmo et des téléostéens. Archs. Zool. exp. gen. 107:287328.Google Scholar
Francois, Y. 1967. Structures vertébrales des actinoptérygiens. Pp. 155172. In: Evolution des Vertébrés. CNRS Symposium 163; Paris.Google Scholar
Graham-Smith, W. and Westoll, T. S. 1937. On a new longheaded dipnoan lungfish from the Upper Devonian of Scaumenac Bay, P.Q., Canada. Trans. R. Soc. Edinb. 59:241266.CrossRefGoogle Scholar
Hall, B. K. 1977. Chondrogenesis of the somitic mesoderm. Adv. Anat. Embryol. Cell. Biol. 53:150.Google ScholarPubMed
Jarvik, E. 1952. On the fish-like tail in the ichthyostegid stegocephalians. Meddr. Gronland. 114:587.Google Scholar
Laerm, J. 1976. The development, function, and design of amphicoelous vertebrae in teleost fishes. Zool. J. Linn. Soc. 58:237254.CrossRefGoogle Scholar
Laerm, J. 1979a. The origin of rhipidistian vertebrae. J. Paleontol. 53:175186.Google Scholar
Laerm, J. 1979b. The origin and homology of the chondrostean vertebral centrum. Can. J. Zool. 57:475485.CrossRefGoogle Scholar
Miles, R. S. 1970. Remarks on the vertebral column and caudal fin of acanthodian fishes. Lethaia. 3:343362.CrossRefGoogle Scholar
Miles, R. S. and Westoll, T. S. 1968. The placoderm fish Coccosteus cuspidatus Miller et Agassiz from the Middle Old Red Sandstone of Scotland. Part I. Descriptive morphology. Trans. R. Soc. Edinb. 67:373476.CrossRefGoogle Scholar
Nielsen, E. 1942. Studies on Triassic fishes from East Greenland. I. Glaucolepis and Boreosomus. Palaeontol. Groenlandica 1:1403.Google Scholar
Panchen, A. L. 1967. The homologies of the labyrinthodont centrum. Evolution. 21:2433.CrossRefGoogle ScholarPubMed
Panchen, A. L. 1977. The origin and evolution of tetrapod vertebrae. Pp. 289318. In: Problems in Vertebrate Evolution. Linnean Soc. Symp. 4. Academic Press; London.Google Scholar
Parrington, F. R. 1967. Vertebrae of early tetrapods. Pp. 269279. In: Evolution des Vertébrés. CNRS Symposium 163; Paris.Google Scholar
Parrington, F. R. 1977. Intercentra: a possible functional interpretation. Pp. 397401. In: Problems in Vertebrate Evolution. Linnean Soc. Symp. 4. Academic Press; London.Google Scholar
Patterson, C. 1968. The caudal skeleton in Lower Liassic pholidophorid fishes. Bull. Brit. Mus. Nat. Hist. Geol. 16:210239.Google Scholar
Romer, A. S. and Parsons, T. S. 1977. The Vertebrate Body. 624 pp. W. B. Saunders Co.; Philadelphia.Google Scholar
Schaeffer, B. 1967. Osteichthyan vertebrae. J. Linn. Soc. Zool. 47:185195.CrossRefGoogle Scholar
Verbout, A. J. 1976. A critical review of the “neugliederung” concept in relation to the development of the vertebral column. Acta Biotheoretica. 25:219258.CrossRefGoogle Scholar
Wainwright, S. A., Briggs, W. D., Currey, J. D., and Gosline, J. M. 1976. Mechanical Design in Organisms. John Wiley and Sons; New York.Google Scholar
Wake, D. B. 1970. Aspects of vertebral evolution in the modern Amphibia. Forma et Functio. 3:3360.Google Scholar
Wake, D. B. and Lawson, R. 1973. Development and adult morphology of the vertebral column in the plethodontid salamander Euracea bislineata, with comments on vertebral evolution in the Amphibia. J. Morphol. 139:251300.CrossRefGoogle ScholarPubMed
Webb, P. W. 1976. The effect of size on the fast-start performance of rainbow trout Salmo gairdneri, and a consideration of piscivorous predator-prey interactions. J. exp. Biol. 65:157177.CrossRefGoogle Scholar
Webb, P. W. 1977. Effects of median-fin amputation on fast-start performance of rainbow trout (Salmo gairdneri). J. exp. Biol. 68:123135.CrossRefGoogle Scholar
Webb, P. W. 1978. Fast-start performance and body form in seven species of teleost fish. J. exp. Biol. 74:211226.CrossRefGoogle Scholar
Weihs, D. 1973. The mechanism of rapid starting of slender fish. Biorheology. 10:343350.CrossRefGoogle ScholarPubMed
Williams, E. E. 1959. Gadow's arcualia and the development of tetrapod vertebrae. Q. Rev. Biol. 34:132.CrossRefGoogle ScholarPubMed