The modern synthesis, as an exclusive proposition, has broken down on both of its fundamental claims: extrapolationism (gradual allelic substitution as a model for all evolutionary change) and nearly exclusive reliance on selection leading to adaptation. Evolution is a hierarchical process with complementary, but different, modes of change at its three major levels: variation within populations, speciation, and patterns of macroevolution. Speciation is not always an extension of gradual, adaptive allelic substitution to greater effect, but may represent, as Goldschmidt argued, a different style of genetic change—rapid reorganization of the genome, perhaps non-adaptive. Macroevolutionary trends do not arise from the gradual, adaptive transformation of populations, but usually from a higher-order selection operating upon groups of species, while the individual species themselves generally do not change following their geologically instantaneous origin. I refer to these two discontinuities in the evolutionary hierarchy as the Goldschmidt break (between change in populations and speciation) and the Wright break (between speciation and trends as differential success among species).
A new and general evolutionary theory will embody this notion of hierarchy and stress a variety of themes either ignored or explicitly rejected by the modern synthesis: punctuational change at all levels, important non-adaptive change at all levels, control of evolution not only by selection, but equally by constraints of history, development and architecture—thus restoring to evolutionary theory a concept of organism.