Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T18:42:07.244Z Has data issue: false hasContentIssue false

Is a new and general theory of evolution emerging?

Published online by Cambridge University Press:  08 February 2016

Stephen Jay Gould*
Affiliation:
Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138

Abstract

The modern synthesis, as an exclusive proposition, has broken down on both of its fundamental claims: extrapolationism (gradual allelic substitution as a model for all evolutionary change) and nearly exclusive reliance on selection leading to adaptation. Evolution is a hierarchical process with complementary, but different, modes of change at its three major levels: variation within populations, speciation, and patterns of macroevolution. Speciation is not always an extension of gradual, adaptive allelic substitution to greater effect, but may represent, as Goldschmidt argued, a different style of genetic change—rapid reorganization of the genome, perhaps non-adaptive. Macroevolutionary trends do not arise from the gradual, adaptive transformation of populations, but usually from a higher-order selection operating upon groups of species, while the individual species themselves generally do not change following their geologically instantaneous origin. I refer to these two discontinuities in the evolutionary hierarchy as the Goldschmidt break (between change in populations and speciation) and the Wright break (between speciation and trends as differential success among species).

A new and general evolutionary theory will embody this notion of hierarchy and stress a variety of themes either ignored or explicitly rejected by the modern synthesis: punctuational change at all levels, important non-adaptive change at all levels, control of evolution not only by selection, but equally by constraints of history, development and architecture—thus restoring to evolutionary theory a concept of organism.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ayala, F. J. 1976. Molecular genetics and evolution. Pp. 120. In: Ayala, F. J., ed. Molecular Evolution. Sinauer Associates; Sunderland, Mass.Google Scholar
Bateson, G. 1978. Mind and Nature. E. P. Dutton; New York.Google Scholar
Bush, G. L. 1975. Modes of animal speciation. Annu. Rev. Ecol. Syst. 6:339364.CrossRefGoogle Scholar
Bush, G. L., Case, S. M., Wilson, A. C., and Patton, J. L. 1977. Rapid speciation and chromosomal evolution in mammals. Proc. Nat. Acad. Sci. 74:39423946.CrossRefGoogle ScholarPubMed
Carson, H. L. 1975. The genetics of speciation at the diploid level. Am. Nat. 109:8392.CrossRefGoogle Scholar
Carson, H. L. 1978. Chromosomes and species formation. Evolution. 32:925927.CrossRefGoogle Scholar
Darwin, C. 1859. On the Origin of Species. 490 pp. John Murray; London.Google Scholar
Darwin, C. 1880. Sir Wyville Thomson and natural selection. Nature 23:32.CrossRefGoogle Scholar
Dobzhansky, Th. 1937. Genetics and the Origin of Species. 364 pp. Columbia Univ. Press; New York.Google Scholar
Dobzhansky, Th. 1951. Genetics and the Origin of Species. (3rd ed.). 364 pp. Columbia Univ. Press; New York.Google Scholar
Ehrlich, P. R. and Raven, P. H. 1969. Differentiation of populations. Science. 165:12281232.CrossRefGoogle ScholarPubMed
Eldredge, N. 1979. Alternative approaches to evolutionary theory. Bull. Carnegie Mus. Nat. Hist. pp. 719.Google Scholar
Eldredge, N. and Cracraft, J. 1980. Phylogenetic Patterns and the Evolutionary Process. Columbia Univ. Press; New York.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: An alternative to phyletic gradualism. Pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper and Co.; San Francisco, California.Google Scholar
Goldschmidt, R. 1940. The Material Basis of Evolution. 436 pp. Yale Univ. Press; New Haven, Conn.Google Scholar
Gould, S. J. 1980. G. G. Simpson, paleontology and the modern synthesis. In: Mayr, E., ed. Conference on the making of the Modern Synthesis. Harvard Univ. Press; Cambridge, Mass.Google Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3:115151.CrossRefGoogle Scholar
Gould, S. J. and Lewontin, R. C. 1979. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist program. Proc. R. Soc. London. 205:581598.Google Scholar
Hampé, A. 1959. Contribution à l'étude du développement et de la regulation des déficiences et des excédents dans la patte de l'embryon de poulet. Arch. Anat. Microsc. Morphol. Exp. 48:345478.Google Scholar
King, M. C. and Wilson, A. C. 1975. Evolution at two levels in humans and chimpanzees. Science. 188:107116.CrossRefGoogle ScholarPubMed
Koestler, A. 1978. Janus: a Summing Up. Random House; New York.Google Scholar
Lewontin, R. C. 1974. The Genetic Basis of Evolutionary Change. 346 pp. Columbia Univ. Press; New York.Google Scholar
Lewontin, R. C. and Hubby, J. L. 1966. A molecular approach to the study of genie heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 54:595609.CrossRefGoogle Scholar
Mayr, E. 1942. Systematics and the Origin of Species. 334 pp. Columbia Univ. Press; New York.Google Scholar
Mayr, E. 1963. Animal Species and Evolution. 797 pp. Belknap Press of Harvard Univ. Press; Cambridge, Mass.CrossRefGoogle Scholar
Mivart, St. G. 1871. On the Genesis of Species. 296 pp. MacMillan; London.Google Scholar
Nei, M. 1975. Molecular Population Genetics and Evolution. American Elsevier; New York.Google ScholarPubMed
Osborn, H. F. 1922. Orthogenesis as observed from paleontological evidence beginning in the year 1889. Am. Nat. 56:134143.CrossRefGoogle Scholar
Ostrom, J. H. 1979. Bird flight: How did it begin. Am. Sci. 67:4656.Google ScholarPubMed
Powell, J. R. 1978. The founder-flush speciation theory: an experimental approach. Evolution. 32:465474.Google ScholarPubMed
Robson, G. C. and Richards, O. W. 1936. The Variation of Animals in Nature. Longmans, Green, and Co.; London.Google Scholar
Romanes, G. J. 1900. Darwin and after Darwin, vol. 2. Post-Darwinian questions. Heredity and Utility. 344 pp. Longmans, Green, and Co.; London.Google Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. 237 pp. Columbia Univ. Press; New York.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. 434 pp. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Stanley, S. M. 1975. A theory of evolution above the species level. Proc. Nat. Acad. Sci. 72:646650.CrossRefGoogle ScholarPubMed
White, M. J. D. 1978. Modes of Speciation. 455 pp. W.H. Freeman; San Francisco, California.Google Scholar
Wilson, A. C., Bush, G. L., Case, S. M., and King, M. C. 1975. Social structuring of mammalian populations and rate of chromosomal evolution. Proc. Nat. Acad. Sci. 72:50615065.CrossRefGoogle ScholarPubMed
Wilson, A. C., Carlson, S. S., and White, T. J. 1977. Biochemical evolution. Annu. Rev. Biochem. 46:573639.CrossRefGoogle ScholarPubMed
Wilson, E. O. et al. 1973. Life on Earth. Sinauer Associates; Sunderland, Mass.Google Scholar
Wright, S. 1967. Comments on the preliminary working papers of Eden and Waddington. In: Moorehead, P. S. and Kaplan, M. M., eds. Mathematical Challenges to the Neo-Darwinian Theory of Evolution. Wistar Inst. Symp. 5:117120.Google ScholarPubMed