Published online by Cambridge University Press: 14 December 2007
To provide the informed health professional with an up to date evaluation of the current thinking regarding requirements for vitamins in infant feeds.
Vitamin adequacy in the neonate is currently defined in terms of circulating levels of a vitamin or of the activity of a vitamin dependent enzyme in the erythrocytes. Although these measurements have their value there is a need to develop biochemical, physiological or clinical markers of well defined specific function. For some vitamins there is a risk of deleterious effects of very high intakes: risk of toxicity needs to be taken into consideration when making recommendations for inclusion in infant formulae.
Breast milk concentrations of vitamins have been used as the criteria of adequate intake by neonates. This may not always be justified. Greater consideration needs to be given to differences in bioavailability of vitamins from breast milk compared with formula feeds, of the influence of season, and of stage of lactation, on the stated composition.
Animal studies have provided limited information regarding effects of different levels of intakes on current status indices in the neonatal period. There are few reports of randomized controlled studies into the effects of different levels of vitamins and these rely heavily on biochemical criteria of adequacy.
The inclusion of β-carotene into formula feeds for premature babies is an issue of current interest. What is the justification for this? Are there potential benefits for the term infant? Riboflavin deficiency in the period around weaning may affect the normal structural and functional development of the gastrointestinal tract; some of these effects may be permanent.
A greater understanding of the absorption and metabolism of vitamins during infancy is required in order to help establish dietary requirements. The relative bioavailability of vitamins in human milk and formulae needs to be investigated. Criteria for vitamin adequacy should be extended to include measures of function. Information regarding the conversion factor from tryptophan to niacin in infancy would allow us to set niacin requirements with greater confidence. There is a particular lack of information about concentrations of biotin and pantothenic acid in breast milk and the relative biochemical status of infants receiving breast milk and formulae. Benefits of including β-carotene into infant formulae need to be evaluated. The role of individual micronutrients in the structural and functional development of the gastrointestinal tract should be explored.