Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T06:40:43.477Z Has data issue: false hasContentIssue false

Vitamin requirements for term infants: considerations for infant formulae

Published online by Cambridge University Press:  14 December 2007

Hilary J. Powers
Affiliation:
University Department of Paediatrics, Sheffield Children's Hospital, Sheffield S10 2TH
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective

To provide the informed health professional with an up to date evaluation of the current thinking regarding requirements for vitamins in infant feeds.

Establishing criteria for adequacy

Vitamin adequacy in the neonate is currently defined in terms of circulating levels of a vitamin or of the activity of a vitamin dependent enzyme in the erythrocytes. Although these measurements have their value there is a need to develop biochemical, physiological or clinical markers of well defined specific function. For some vitamins there is a risk of deleterious effects of very high intakes: risk of toxicity needs to be taken into consideration when making recommendations for inclusion in infant formulae.

Breast milk as the ‘gold standard’

Breast milk concentrations of vitamins have been used as the criteria of adequate intake by neonates. This may not always be justified. Greater consideration needs to be given to differences in bioavailability of vitamins from breast milk compared with formula feeds, of the influence of season, and of stage of lactation, on the stated composition.

Experimental approaches

Animal studies have provided limited information regarding effects of different levels of intakes on current status indices in the neonatal period. There are few reports of randomized controlled studies into the effects of different levels of vitamins and these rely heavily on biochemical criteria of adequacy.

Recent developments

The inclusion of β-carotene into formula feeds for premature babies is an issue of current interest. What is the justification for this? Are there potential benefits for the term infant? Riboflavin deficiency in the period around weaning may affect the normal structural and functional development of the gastrointestinal tract; some of these effects may be permanent.

Research to be done

A greater understanding of the absorption and metabolism of vitamins during infancy is required in order to help establish dietary requirements. The relative bioavailability of vitamins in human milk and formulae needs to be investigated. Criteria for vitamin adequacy should be extended to include measures of function. Information regarding the conversion factor from tryptophan to niacin in infancy would allow us to set niacin requirements with greater confidence. There is a particular lack of information about concentrations of biotin and pantothenic acid in breast milk and the relative biochemical status of infants receiving breast milk and formulae. Benefits of including β-carotene into infant formulae need to be evaluated. The role of individual micronutrients in the structural and functional development of the gastrointestinal tract should be explored.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1997

References

Ahmed, I., Atiq, M., Iqbal, J., Khurshid, M. & Whittaker, P. (1995). Vitamin D deficiency rickets in breast-fed infants presenting with hypocalcaemic seizures. Acta Paediatrica 84, 941942.CrossRefGoogle ScholarPubMed
Ala-Houhala, M., Koskinen, T., Parvainen, M. T. & Visakorpi, J. K. (1988). 25-hydroxyvitamin D and vitamin D in human milk: effects of supplementation and season. American Journal of Clinical Nutrition 48, 10571060.CrossRefGoogle ScholarPubMed
Amédée-Manesmee, O., Anderson, D. & Olson, J. A. (1984). Relation of the relative dose response to liver concentrations of vitamin A in generally well-nourished surgical patients. American Journal of Clinical Nutrition 39. 898902.CrossRefGoogle Scholar
American Academy of Pediatrics (1985). Composition of human milk; normative data. Appendix. In Pediatric Nutrition Handbook, 2nd edn, pp. 363368. Elk Grove Village, III: American Academy of Pediatrics.Google Scholar
Anderson, D. M. & Pittard, W. B. (1985). Vitamin E and C concentrations in human milk with maternal megadosing: a case report. Journal of the American Dietetic Association 85, 715717.CrossRefGoogle Scholar
Antony, A. C., Utley, C. S., Marcell, P. D. & Kolhouse, J. F. (1982). Folate-binding proteins in milk may facilitate, folate absorption. Nutrition Reviews 40, 9092.Google Scholar
Aranda, J. V., Chemtob, S., Laudignon, N. & Sasyniuk, B. I. (1986). Furosemide and vitamin E. Two problem drugs in neonatology. Pediatric Clinics of North America 33, 583–602.CrossRefGoogle ScholarPubMed
Bachrach, S., Fisher, J. & Parks, J. S. (1979). An outbreak of vitamin D deficiency rickets in a susceptible population. Pediatrics 64, 871877.CrossRefGoogle Scholar
Barak, M., Herschkowitz, S. & Montag, J. (1986). Soft tissue calcification: a complication of vitamin E injection. Pediatrics 77, 382385.CrossRefGoogle ScholarPubMed
Bates, C. J., Liu, D.-S., Fuller, N. J. & Lucas, A. (1985). Susceptibility of riboflavin and vitamin A in breast milk to photodegradation and its implications for the use of banked breast milk in infant feeding. Acta Paediatrica Scandinavica 74, 4044.CrossRefGoogle ScholarPubMed
Bates, C. J. & Prentice, A. (1994). Breast milk as a source of vitamins, essential minerals and trace elements. Pharmacology and Therapeutics 62, 193220.CrossRefGoogle ScholarPubMed
Bates, C. J. & Prentice, A. (1996). In Drugs und Human Lactation, 2nd edn, pp. 533607 [Bennett, P. N. and the WHO Working Group, editors]. Amsterdam: Elsevier.CrossRefGoogle Scholar
Bates, C. J., Prentice, A. M., Paul, A. A., Prentice, A., Sutcliffe, B. A. & Whitehead, R. G. (1982). Riboflavin status in infants born in rural Gambia, and the effects of a weaning food supplement. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 253258.CrossRefGoogle ScholarPubMed
Bates, C. J., Prentice, A. M., Prentice, A., Lamb, W. H. & Whitehead, R. G. (1983). The effect of vitamin C supplementation on lactating women in Keneba, a West African rural community. International Journal for Vitamin and Nutrition Research 53, 6876.Google ScholarPubMed
Bell, E. F. (1989). Upper limit of vitamin E in infant formulas. Journal of Nutrition 19, 18291831.CrossRefGoogle Scholar
Belton, N. R. (1986). Rickets—not only the ‘English Disease’. Acta Paediatrica Scandinavica Suppl. no. 323, 6875.CrossRefGoogle ScholarPubMed
Bendich, A. & Langseth, L. (1989). Safety of vitamin A. American Journal of Clinical Nutrition 149. 358371.CrossRefGoogle Scholar
Bessey, O. A., Adam, D. J. D. & Hansen, A. E. (1957). Intake of vitamin B6 and infantile convulsions: a first approximation of requirements of pyridoxine in infants. Pediatrics 20, 3344.CrossRefGoogle ScholarPubMed
Bieri, J. G. & Evarts, R. P. (1973). Tocopherols and fatty acids in American diets. The recommended allowance for vitamin E. Journal of the American Dietetic Association 62, 147151.CrossRefGoogle ScholarPubMed
Bloch, C. A., Rothberg, A. D. & Bradlow, B. A. (1984). Mother-infant prothrombin precursor status at birth. Journal of Pediatric Gastroenterology and Nutrition 3, 101103.Google ScholarPubMed
Boersma, E. R., Offringa, P. J., Muskiet, F. A. J., Chase, W. M. & Simmons, I. J. (1991). Vitamin E, lipid fractions and fatty acid composition of colostrum, transitional milk and mature milk: an international comparative study. American Journal of Clinical Nutrition 53, 11971204.CrossRefGoogle ScholarPubMed
Borschel, M. W., Kirksey, A. & Hannemann, R. E. (1986). Effects of vitamin B6 intake on nutriture and growth of young infants. American Journal of Clinical Nutrition 43. 715.CrossRefGoogle ScholarPubMed
Büller, H., Peters, M., Burger, B., Nagelkerke, N., Ten-Cate, J. W., Breederveld, C. & Heymans, H. (1986). Vitamin K status beyond the neonatal period. A prospective study in normal breast-fed and formula-fed infants. European Journal of Pediatrics 145, 496499.CrossRefGoogle ScholarPubMed
Butte, N. F. & Calloway, D. H. (1981). Evaluation of lactational performance of Navajo women. American Journal of Clinical Nutrition 34. 22102215.CrossRefGoogle ScholarPubMed
Butte, N. F., Garza, C., Smith, E. O. & Nichols, B. L. (1984). Human milk intake and growth in exclusively breast-fed infants. Journal of Pediatrics 104, 187195.CrossRefGoogle ScholarPubMed
Byerley, L. O. & Kirksey, A. (1985). Effects of different levels of vitamin C intake on the vitamin C concentration in human milk and the vitamin C intakes of breast-fed infants. American Journal of Clinical Nutrition 41, 665671.CrossRefGoogle ScholarPubMed
Canfield, L. M. & Hopkinson, J. M. (1989). State of the art vitamin K in human milk. Journal of Pediatric Gastroenterology and Nutrition 8, 430441.Google ScholarPubMed
Canfield, L. M., Hopkinson, J. M., Lima, A. F., Silva, B. & Garza, C. (1991). Vitamin K in colostrum and mature human milk over the lactation period—a cross-sectional study. American Journal of Clinical Nutrition 53, 730735.CrossRefGoogle ScholarPubMed
Chanda, R., Owen, E. C. & Cramond, B. (1951). The composition of human milk with special reference to the relation between phosphorus partition and phosphatase and to the partition of certain vitamins. British Journal of Nutrition 5, 228242.CrossRefGoogle Scholar
Chang, Y. T., Germain-Lee, E. L., Doran, T. F., Migeon, C. J., Levine, M. A. & Berkovitz, G. D. (1992). Hypocalcemia in non-white breast fed infants: vitamin deficiency revisited. Clinical Pediatrics 31, 695698.CrossRefGoogle Scholar
Chappell, J. E., Francis, T. & Clandinin, M. T. (1985). Vitamin A and E content of human milk at early stages of lactation. Early Human Development 11, 157167.CrossRefGoogle Scholar
Chappell, J. E., Francis, T. & Clandinin, M. T. (1986). Simultaneous high performance liquid chromatography analysis of retinol esters and tocopherol isomers in human milk. Nutrition Research 6, 849852.CrossRefGoogle Scholar
Committee on Dietary Allowances, Food and Nutrition Board (1980). Recornended Dietary Allowances, 9th edn. Washington, DC: National Academy of Sciences.Google Scholar
Committee on Fetus and Newborn (1985). Vitamin E and the prevention of retinopathy of prematurity. Pediatrics 76, 315316.CrossRefGoogle Scholar
Conly, J. M., Stein, K., Worobetz, L. & Rutledge-Harding, S. (1994). The contribution of vitamin K2 (menaquinones) produced by the intestinal flora, to human nutritional requirements for vitamin K. American Journal of Gastroenterology 89, 915923.Google Scholar
Cooperman, J. M., Dweck, H. S., Newman, L. J., Garbarino, C. & Lopez, R. (1982). The folate in human milk. American Journal of Clinical Nutrition 36, 576580.CrossRefGoogle ScholarPubMed
Cooperman, J. M. & Lopez, R. (1991). Pteroylglutamates in human milk. American Journal of Clinical Nutrition 54, 760761.CrossRefGoogle ScholarPubMed
Corrigan, J. J. & Kryc, J. J. (1980). Factor II (prothrombin) levels in cord blood: correlation of anticoagulant activity with immunoreactive protein. Journal of Pediatrics 97, 979985.CrossRefGoogle Scholar
Coryell, M. N., Harris, M. E., Miller, S., Williams, H. H. & Macy, I. G. (1945). Human milk studies. 22. Nicotinic acid and biotin contents of colostrum and mature human milk. American Journal of Diseases of Children 70, 150161.Google Scholar
DeBuse, P. J. (1992). Shoshin beri beri in an infant of a thiamine-deficient mother. Acta Paediatrica 81, 723724.CrossRefGoogle Scholar
Deodhar, A. D., Rajalakshmi, R. & Ramakrishnan, C. V. (1964). Studies on human lactation. 3. Effect of dietary vitamin supplementation on vitamin content of breast milk. Acta Paediatrica Scandinavica 53, 42–48.CrossRefGoogle Scholar
Department of Health (1991). Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Report of the Panel on Dietary Reference Values of the Committee on Medical Aspects of Food Policy (Reports on Health and Social Subjects no. 41). London: HMSO.Google Scholar
Department of Health & Social Security (1977). The Composition of Mature Human Milk (Reports on Health and Social Subjects no. 12). London: HMSOGoogle Scholar
Department of Health & Social Security (1981). Artificial Feeds for the Young Infant (Reports on Health and Social Subjects no. 18). London: HMSO.Google Scholar
Department of Health & Social Security (1988). Present Day Practice Infant Feeding: Third Report (Reports on Health and Social Subjects no. 32). London: HMSO.Google Scholar
Dewey, K. G. & Lönnerdal, B. (1982). Nutrition, growth and fatness of breast fed infants from one to six months. Federation Proceedings 41, 352.Google Scholar
Dhivavibulya, K., Ouvrier, R., Johnston, I., Procopis, P. & Antony, J. (1991). Benign intracranial hypertension in childhood: a review of 23 patients. Journal of Pediatrics and Child Health 27. 304307.CrossRefGoogle Scholar
Dison, P. J., Lockitch, G., Halstead, A. C., Pendray, M. R., Macnab, A. & Wittman, B. K. (1993). Influence of maternal factors on cord and neonatal plasma micronutrient levels. American Journal of Perinatology 10, 3035.CrossRefGoogle ScholarPubMed
Edidin, D. V., Levitsky, L. L., Schey, W., Dumbovic, N. & Campos, A. (1980). Resurgence of nutritional rickets associated with breast feeding and special dietary practices. Pediatrics 65, 232235.CrossRefGoogle ScholarPubMed
Eitenmiller, R. R., Bryan, W. D., Khalsa, I. K., Feeley, R. M. & Barnhart, H. M. (1984). Folate content of human milk during early lactational stages. Nutrition Research 4, 391397.CrossRefGoogle Scholar
Ek, J. (1983). Plasma, red cell and breast milk folacin concentrations in lactating women. American Journal of Clinical Nutrition 38. 929935.CrossRefGoogle ScholarPubMed
Ek, J. & Magnus, E. M. (1979). Plasma and red blood cell folate in breast-fed infants. Acta Paediatrica Scandinavica 68. 239–239.CrossRefGoogle Scholar
Ek, J. & Magnus, E. (1982). Plasma and red cell folate values and folate requirements in formula-fed term infants. Journal of Pediatrics 100, 738744.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Powers, H. J., Minski, M. J., Whitehead, J. & Downes, R. (1992). Riboflavin deficiency and iron absorption in adult Gambian men. Annals of Nutrition and Metabolism 36, 3440.CrossRefGoogle ScholarPubMed
Foged, N., Lillquist, K., Rolschau, J. & Blaabjerg, O. (1989). Effect of folic acid supplementation on small-for-gestational-age infants born at term. European Journal of Pediatrics 149, 6567.CrossRefGoogle ScholarPubMed
Food & Agriculture Organization (1988). Requirements of Vitamin A, Folate and Vitamin B12. Report of a Joint FAO/WHO Expert Consultation (FA0 Food and Nutrition Series no. 23). Rome: FAO.Google Scholar
Ford, J. E., Zechalko, A., Murphy, J. & Brooke, O. G. (1983). Comparison of the B vitamin composition of milk from mothers of preterm and term babies. Archives of Disease in Childhood 58. 367372.CrossRefGoogle Scholar
Fournier, B., Sann, L., Guillaumont, M. & Leclecq, M. (1987). Variations of phylloquinone concentration in human milk at various stages of lactation and in cow's milk at various seasons. American Journal of Clinical Nutrition 45, 551558.CrossRefGoogle ScholarPubMed
Fredrikzon, B., Hernel, O., Blackberg, L. & Olivecrona, T. (1978). Bile-salt stimulated lipase in human milk: evidence of activity in vivo and of a role in the digestion of milk retinol esters. Pediatric Research 12, 10481052.CrossRefGoogle ScholarPubMed
Fritz, I., Said, H., Harris, C., Murrell, J. & Greene, H. L. (1987). A new sensitive assay for plasma riboflavin using high performance liquid chromatography. Journal of American College of Nutrition 6, 449.Google Scholar
Gambon, R. C., Lentze, M. J. & Rossi, E. (1986). Megaloblastic anaemia in one of monozygous twins breast fed by their vegetarian mother. European Journal of Pediatrics 145, 570571.CrossRefGoogle ScholarPubMed
Garewal, G., Narang, A. & Das, K. C. (1988). Infantile tremor syndrome: a vitamin B12 deficiency syndrome in infants. Journal of Tropical Pediatrics 34. 174178.CrossRefGoogle ScholarPubMed
Garrow, D., Chisholm, M. & Radford, M. (1986). Vitamin K and Thrombotest values in full term infants. Archives of Disease in Childhood 61, 349351.CrossRefGoogle ScholarPubMed
Gaull, G. E., Jenson, R. G., Rassin, D. K. & Malloy, M. H. (1982). Human milk as food. Advances in Perinatal Medicine 2, 47120.CrossRefGoogle Scholar
Gebre-Medhin, M., Vahlquist, A., Hofvander, Y., Uppsäl, L. & Vahlquist, B. (1976). Breast milk composition in Ethiopian and Swedish mothers. I. Vitamin A and β-carotene. American Journal of Clinical Nutrition 29, 441451.CrossRefGoogle ScholarPubMed
Gelardi, R. C., (1992). Vitamin D content of infant formula (letter). New England Journal of Medicine 327. 894.Google Scholar
George, D. E. & de Francesca, B. A. (1989). Human milk in comparison to cow milk. In Textbook of Gastroenterology and Nutrition in Infancy, 2nd edn, pp. 239434 [Lebenthal, E. editor]. New York: Raven Press.Google Scholar
Golding, J., Greenwood, R., Birmingham, K. & Mott, M. (1992). Childhood cancer, intramuscular vitamin K, and pethidine given during labour. British Medical Journal 305, 341346.CrossRefGoogle ScholarPubMed
Greene, H. L. (1982). In Text book of Gastroenterology and Nutrition in Infancy. vol. 1. Gastrointestinal Development and Perinatal Nutrition, pp. 585593 [Lebenthal, E. editor]. New York: Raven Press.Google Scholar
Greer, F. R., Hollis, B. W. & Napoli, J. L. (1984). High concentrations of vitamin D2 in human milk associated with pharmacological doses of vitamin D2. Journal of Pediatrics 105, 6164.CrossRefGoogle ScholarPubMed
Greer, F. R., Marshall, S., Cherry, J. & Suttie, J. W. (1991). Vitamin K status of lactating mothers, human milk, and breast-feeding infants. Pediatrics 88, 751756.Google ScholarPubMed
Greer, F. R., Marshall, S. P., Foley, A. L. & Suttie, J. W. (1997). Improving vitamin K status of breastfeeding infants with maternal vitamin K supplements. Pediatrics 99, 8892.CrossRefGoogle ScholarPubMed
Greer, F. R., Searcy, J. E., Levin, R. S., Steichen, J. J., Steichen-Asche, P. S. & Tsang, R. C. (1982). Bone mineral content and serum 25-hydroxyvitamin D concentrations in breast-fed infants with and without supplemental vitamin D: one year follow-up. Journal of Pediatrics 100. 919922.CrossRefGoogle ScholarPubMed
Greer, F. R. & Tsang, R. C. (1983). Vitamin D in human milk: is there enough? Journal of Pediatric Gastroenterology and Nutrition 2, S217S281.CrossRefGoogle ScholarPubMed
Gregory, J. F. (1980). Effects of ε-pyridoxal-lysine bound to dietary protein on the vitamin B6 status of rats. Journal of Nutrition 110. 9951005.CrossRefGoogle ScholarPubMed
Gromisch, D. S., Lopez, R., Cole, H. S. & Cooperman, J. M. (1977). Light (phototherapy)-induced riboflavin deficiency in the neonate. Journal of Pediatrics 90. 118122.CrossRefGoogle ScholarPubMed
Guilarte, T. R. (1993). Vitamin B6 and cognitive development: recent research findings from human and animal studies. Nutrition Reviews 51, 193199.CrossRefGoogle ScholarPubMed
György, P., Cogan, G. & Rose, C. S. (1952). Availability of vitamin E in the newborn infant. Proceedings of the Society for Experimental Biology and Medicine 81, 536538.CrossRefGoogle ScholarPubMed
Haddad, J. G. (1983). Survey of competition assays for the vitamin D metabolites. In Assay of Calcium Regulating Hormones, pp. 4963 [Bikle, D. D. editor]. New York: Springer Verlag.CrossRefGoogle Scholar
Hågå, P., Ek, J. & Kran, S. (1982). Plasma tocopherol levels and vitamin E/p Lipoprotein relationships during pregnancy and in cord blood. American Journal of Clinical Nutrition 36. 12001204.CrossRefGoogle ScholarPubMed
Halsted, C. H., Reisenauer, A. M., Shane, B. & Tamura, T. (1978). Availability of monoglutamyl and polyglutamyl folates in normal subjects and in patients with coeliac sprue. Gut 19. 886891.CrossRefGoogle ScholarPubMed
Hanawa, Y., Maki, M., Murata, B., Matsuyama, E., Yamomoto, Y., Nagao, T., Yamada, K., Ikeda, I., Terao, T., Mikami, S., Shiraki, K., Komazawa, M., Shirahata, A., Tsuji, Y., Motohara, K. & Tsukimoto, I. (1988). The second nation-wide survey in Japan of vitamin K deficiency in infancy. European Journal of Peditrics 147, 472477.CrossRefGoogle ScholarPubMed
Haroon, Y., Shearer, M. J., Rahim, S., Gunn, W. G., McEnery, G. & Barkhan, P. (1982). The content of phylloquinone (vitamin K1) in human milk. cows' milk and infant formula foods determined by high performance liquid chromatography. Journul of Nutrition 112, 11051117.Google ScholarPubMed
Harzer, G., Haug, M. & Bindels, J. G. (1986). Biochemistry of maternal milk in early lactation. Human Nutrition: Applied Nutrition 40A. Supplement 1. 1118.Google Scholar
Haug, M., Laubach, C., Burke, M. & Harzer, G. (1987). Vitamin E in human milk from mothers of preterm and term infants. Journal of Pediatric Gastroenterology and Nutrition 6. 605609.Google ScholarPubMed
Higginbottom, M. C., Sweetman, L. & Nyhan, W. L. (1978). A syndrome of methylmalonic aciduria, homocysteinuria. megaloblastic anemia and neurological abnormalities in a vitamin B12 deficient breast-fed infant of a strict vegetarian. New England Journal of Medicine 299, 317323.CrossRefGoogle Scholar
Hirano, M., Honma, K., Daimatsu, T., Hayakawa, K., Oizumi, J., Zaima, K. & Kanke, Y. (1992). Longitudinal variations of biotin content in human milk—research note. International Journal for Vitamin and Nutrition Research 62, 281282.Google Scholar
Hoey, H., Linnell, J. C., Oberholzer, V. G. & Laurance, B. M. (1982). Vitamin B12 deficiency in a breast-fed infant of a mother with pernicious anaemia. Journal of the Royal Society of Medicine 75, 656–658.CrossRefGoogle Scholar
Hoff, N., Haddad, J., Teitelbaum, S., McAlister, W. & Hillman, L. S. (1979). Serum concentrations of 25(OH) D in rickets of extremely premature infants. Journal of Pediatrics 94, 460466.CrossRefGoogle Scholar
Hoffbrand, A. V. (1970). Folate deficiency in premature infants. Archives of Disease in Childhood 45, 441444.CrossRefGoogle ScholarPubMed
Hogenbirk, K., Peters, M., Bouman, P., Sturk, A. & Buller, H. A. (1993). The effect of formula versus breast feeding and exogenous vitamin K1 supplementation on circulating levels of vitamin K1 and vitamin K-dependent clotting factors in newborns. European Journal of Pediatrics 152.7274.CrossRefGoogle ScholarPubMed
Holick, M. F., Shao, Q., Liu, W. W. & Chen, T. C. (1992). The vitamin D content of fortified milk and infant formula. New England Journal of Medicine 326, 11781181.CrossRefGoogle ScholarPubMed
Hollis, B. W. (1983). Improved quantitation of vitamin D2, vitamin D3, 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in human milk. Analytical Biochemistry 131, 211219.CrossRefGoogle Scholar
Hollis, B. W., Ala-Houhala, M., Koskioen, T., Parvainen, M. T. & Visakorpi, J. K. (1988). 25-hydroxy vitamin D and vitamin D in human milk: effects of supplementation and season. American Journal of Clinical Nutrition 48. 10571060.Google Scholar
Hollis, B. W., Pittard, W. B. & Reinhardt, T. A. (1986). Relationships among vitamin D. 25-hydroxyvitamin D and vitamin D binding protein concentrations in the plasma and milk of human subjects. Journal of Clinical Endocrinology and Metabolism 62, 4144.CrossRefGoogle ScholarPubMed
Holt, L. E. (1956). The adolescence of nutrition. Archives of Disease in Childhood 31, 427438.CrossRefGoogle ScholarPubMed
Hole, L. E., Nemir, R. L., Snyderman, S. E., Albanese, A. A., Ketron, K. C., Guy, L. P. & Carretero, R. (1949). The thiamine requirement of the normal infant. Journal of Nutrition 37, 5366.Google Scholar
Hoogenboezem, T., Degenhart, H. J., Keizer-Schrama, S. M. P. F.de M., Bouillon, R., Grose, W. F.A., Hackeng, W. H. L. & Visser, H. K.A. (1988). Vitamin D metabolism in breast fed infants and their mothers. Pediatric Research 25. 623628.CrossRefGoogle Scholar
Horwitt, M. K., Harvey, C. C., Dahn, C. C., & Scary, M. T. (1972). Relationship between tocopherol and serum lipid levels for determination of nutritional adequacy. Annals of the New York Academy of Sciences 203, 233236.CrossRefGoogle ScholarPubMed
Hovi, L., Hekali, R. & Siimes, M. A. (1979). Evidence of riboflavin depletion in breast-fed newborns and its further acceleration during treatment of hyperbilirubinaemia by phototherapy. Acra Paediatrica Scandinuvica 68, 567570.CrossRefGoogle ScholarPubMed
Hussein, L., El-Nokaly, F. & Hamdy, B. (1985). Patterns of glycosaminoglycans excretion in the urine of Egyptians differing in their vitamin A status. International Journal for Vitamin and Nutrition Research 55, 133137.Google ScholarPubMed
Irwin, M. I. & Hutchins, B. K. (1976). A conspectus of research on vitamin C requirements of man. Journal of Nutrition 106, 821879.CrossRefGoogle ScholarPubMed
Jadhav, M., Webb, J. K. G., Vaishnava, S. & Baker, S. J. (1962). Vitamin-B12 deficiency in Indian infants. A clinical syndrome. Lancet ii, 903–907.CrossRefGoogle Scholar
Jansson, L., Akesson, B. & Holmberg, L. (1981). Vitamin E and fatty acid composition of human milk. American Journal of Clinical Nutrition 34, 813.CrossRefGoogle ScholarPubMed
Jathar, V. S., Kamath, S. A., Parikh, M. N., Rege, D. V. & Satoskar, R. S. (1970). Maternal milk and serum vitamin B12, folic acid, and protein levels in Indian subjects. Archives of Disease in Childhood 45. 236241.CrossRefGoogle ScholarPubMed
Jeans, P. C. & Steams, G. (1938). The effect of vitamin D on linear growth in infancy. 2. The effects of intakes above 1800 USP units daily. Journal of Pediatrics 13, 730740.CrossRefGoogle Scholar
Johnston, L., Vaughan, L. & Fox, H. M. (1981). Pantothenic acid content of human milk. American Journal of Clinical Nutrition 34. 22052209.CrossRefGoogle ScholarPubMed
Kang-Yoon, S. A., Kirksey, A., Giacola, G. & West, K. (1992). Vitamin B6 status of breast-fed neonates: influence of pyridoxine supplementation on mothers and neonates. American Journal of Clinical Nutrition 56, 548558.CrossRefGoogle ScholarPubMed
Karp, W. B. & Robertson, A. F. (1986). Vitamin E in neonatology. Advances in Pediatrics 33, 127147.CrossRefGoogle ScholarPubMed
Karra, M. V., Udipi, S. A., Kirksey, A. & Roepke, J. L. B. (1986). Changes in specific nutrients in breast milk during extended lactation. American Journal of Clinical Nutrition 43, 495503.CrossRefGoogle ScholarPubMed
Keenan, W. J., Jewett, T. & Glueck, H. I. (1971). Role of feeding and vitamin K in hypoprothrombinemia of the newborn. American Journal of Diseases of Children 121, 271277.Google ScholarPubMed
Kim, Y., English, C., Reich, P., Gehr, L. E. & Simpson, K. L. (1990). Vitamin A and carotenoids in human milk. Journal of Agricultural and Food Chemistry 38, 19301933.CrossRefGoogle Scholar
Kirksey, A. & Udipi, S. A. (1985). Vitamin B6 in pregnancy and lactation. In Vitamin B6: Its Role in Health and Disease, pp. 5777 [Reynolds, R. D. and Leklem, J. E., editors]. New York: Alan R. Liss.Google Scholar
Klebanoff, M. A., Read, J. S., Mills, J. L. & Shiono, P. H. (1993). The risk of childhood cancer after neonatal exposure to vitamin K. New England Journal of Medicine 329. 905908.CrossRefGoogle ScholarPubMed
Kon, S. K. & Mawson, E. H. (1950). The vitamin A and carotenoid content of milk. In Human Milk: Wartime Studies of Certain Vitamins and Other Constituents, pp. 3269 (Medical Research Council Special Report Series no. 269). London: HMSO.Google Scholar
Koo, W. W. K., Sherman, R., Succop, P., Ho, M., Buckley, D. & Tsang, R. C. (1989). Serum vitamin D metabolites in very low birth weight infants with and without rickets and fractures. Journal of Pediatrics 114, 10171022.CrossRefGoogle ScholarPubMed
Kruse, K. & Kracht, U. (1986). Evaluation of serum osteocalcin as an index of altered bone metabolism. European Journal of Pediatrics 145, 2733.CrossRefGoogle ScholarPubMed
Kuhne, T., Bubl, R. & Baumgartner, R. (1991). Maternal vegan diet causing a serious infantile neurological disorder due to vitamin B12 deficiency. European Journal of Pediatrics 150, 205208.CrossRefGoogle ScholarPubMed
Kunz, C., Niesen, M., Lilienfeld-Toal, H. v. & Burmeister, W. (1984). Vitamin D, 25-hydroxyvitamin D and 1.25 dihydroxyvitamin D in cow's milk, infant formulas and breast milk during different stages of lactation. International Journal for Vitamin and Nutrition Research 54. 141148.Google Scholar
Lammi-Keefe, C. J., Jensen, R. G., Clark, R. M. & Ferris, A. M. (1985). Alpha tocopherol, total lipid and linoleic acid contents of human milk at 2.6, 12, and 16 weeks. In Composition and Physiological Properties of Human Milk, pp. 241–245 [J, Schaub, editor]. New York: Elsevier Science Publishers.Google Scholar
Lane, P. A., Hathaway, W. E., Githens, J. H., Krugman, R. D. & Rosenberg, D. A. (1983). Fatal intracranial hemorrhage in a normal infant secondary to vitamin K deficiency. Pediatrics 72, 562564.CrossRefGoogle Scholar
Lemons, J. A. & Maisels, M. J. (1985). Vitamin E—how much is too much? Pediatrics 76. 625627.CrossRefGoogle ScholarPubMed
Lönnerdal, B. (1986). Effects of maternal dietary intake on human milk composition. Journal of Nutrition 116, 499513.CrossRefGoogle ScholarPubMed
Lönnerdal, B., Forsum, E. & Hambraeus, L. (1976). A longitudinal study of the protein, nitrogen, and lactose contents of human milk from Swedish well-nourished mothers. American Journal of Clinical Nutrition 29. 11271133.CrossRefGoogle ScholarPubMed
Luhby, A. L., Cooperman, J. M., Stone, M. L. & Slobody, L. B. (1961). Physiology of vitamin B12 in pregnancy, the placenta, and the newborn. American Journal of Diseases of Children 102, 753754.Google Scholar
McCullough, A. L., Kirksey, A., Wachs, T. D., McCabe, G. P., Bassily, N. S., Bishry, Z., Galal, O. M., Harrison, G. G. & Jerome, N. W. (1990). Vitamin B6 status of Egyptian mothers: relation to infant behaviour and maternal-infant interactions. American Journal of Clinical Nutrition 51, 10671074.CrossRefGoogle ScholarPubMed
McLaughlin, M., Fairney, A., Lester, E., Raggatt, P. R., Brown, D. J. & Wills, M. R. (1974). Seasonal variations in serum 25-hydroxycholecalciferolin healthy people. Lancet 1, 536537.CrossRefGoogle ScholarPubMed
McNinch, A. W., Orme, R.L'E. & Tripp, J. H. (1983). Haemorrhagic disease of the newborn returns. Lancet 1, 10891090.CrossRefGoogle ScholarPubMed
Macy, I. G. (1949). Composition of human colostrum and milk. American Journal of Diseases of Children 78.589603.Google ScholarPubMed
Mahoney, C. P., Margolis, M. T., Knauss, T. A. & Labbe, R. F. (1980). Chronic vitamin A intoxication in infants fed chicken liver. Pediatrics 650, 893896.CrossRefGoogle Scholar
Mamunes, P., Prince, P. E., Thornton, N. H., Hunt, P. A. & Hitchcock, E. S. (1976). Intellectual defects after transient tyrosinemia in the term neonate. Pediatrics 57, 675–480.CrossRefGoogle ScholarPubMed
Markestad, T., Hesse, V., Siebenhuner, M., Jahreis, G., Aksnes, L., Plenert, W. & Aarskog, D. (1987). Intermittent high dose vitamin D prophylaxis during infancy: effect on vitamin D metabolites. calcium and phosphorus. American Journal of Clinical Nutrition 46, 652–458.CrossRefGoogle ScholarPubMed
Markestad, T., Kolmannskog, S., Amtzen, E., Toftegaard, L., Haneberg, B. & Aksnes, L. (1984). Serum concentrations of vitamin D metabolites in exclusively breast-fed infants at 70° north. Acta Paediatrica Scandinavica 73, 2932.CrossRefGoogle ScholarPubMed
Martone, W. J., Williams, W. W., Mortensen, M. L., Gaynes, R. P., White, J. W., Lorch, V., Murphy, M. D., Sinha, S. N., Frank, D. J., Kosmetatos, N., Bodenstein, C. J. & Roberts, R. J. (1986). Illness with fatalities in premature infants: association with an intravenous vitamin E preparation, E-Fed. Pediatrics 78, 591600.Google Scholar
Menkes, J. H., Welcher, D. W., Levi, H. S., Dallas, J. & Cretsky, N. E. (1972). Relationship of elevated blood tyrosine to the ultimate intellectual performance of premature infants. Pediatrics 49, 218224.CrossRefGoogle Scholar
Mino, M. & Nishino, H. (1973). Fetal and maternal relationships in serum vitamin E levels. Journal of Nutritional Science and Vitaminology 19, 475482.CrossRefGoogle Scholar
Miyake, M., Miki, M., Yasuda, H., Ogihara, T. & Mino, M. (1991). Vitamin E and the peroxidizability of erythrocyte membranes in neonates. Free Radical Research Communications 15, 4150.CrossRefGoogle ScholarPubMed
Mock, D. M., Mock, N. I. & Dankle, J. A. (1992). Secretory patterns of biotin in human milk. Journal of Nutrition 122, 546552.CrossRefGoogle ScholarPubMed
Moffatt, P. A., Lammi-Keefe, C. J., Ferris, A. M. & Jensen, R. G. (1987). Alpha and gamma tocopherols in pooled human milk after storage. Journal of Pediatric Gastroenterology and Nutrition 6, 225227.Google ScholarPubMed
Molony, C. J. & Parmelee, A. H. (1954). Convulsions in young infants as a result of pyridoxine (vitamin B6) deficiency. Journal of the American Medical Association 154, 405406.CrossRefGoogle ScholarPubMed
Moore, M. C., Greene, H. L., Phillips, B., Franck, L., Shulman, R. J., Murrell, J. E. & Ament, M. E. (1986). Evaluation of a pediatric multiple vitamin preparation for total parented nutrition in infants and children. I. Blood levels of water-soluble vitamins. Pediatrics 77. 530538.CrossRefGoogle Scholar
Moran, J. R., Vaughan, R., Stroop, S., Coy, S., Johnston, H. & Greene, H. L. (1983). Concentrations and total daily output of micronutrients in breast milk of mothers delivering preterm: a longitudinal study. Journal of Pediatric Gastroenterology and Nutrition 2, 629634.CrossRefGoogle ScholarPubMed
Morrison, A. B. & Campbell, J. A. (1960). Vitamin absorption studies. I. Factors influencing the excretion of oral test doses of thiamine and riboflavin by human subjects. Journal of Nutrition 72, 435440.CrossRefGoogle ScholarPubMed
Moser-Veillon, P. B. & Reynolds, R. D. (1990). A longitudinal study of pyridoxine and zinc supplementation of lactating women. American Journal of Clinical Nutrition 52, 135141.CrossRefGoogle ScholarPubMed
Motohara, K., Matsukura, M., Matsuda, I., Iribe, K., Ikeda, T., Kondo, Y., Yonekubo, A., Yamamoto, Y. & Tsuchiya, F. (1984). Severe vitamin K deficiency in breast fed infants. Journal of Pediatrics 105, 943945.CrossRefGoogle ScholarPubMed
Munks, B., Robinson, A., Williams, H. H. & Macy, I. G. (1945). Human milk studies. 25. Ascorbic acid and dehydroascorbic acid in colostrum and mature human milk. American Journal of Diseases of Children 70, 176181.Google Scholar
Muntean, W., Petek, W., Rosanelli, K. & Mutz, I. D. (1979). Immunologic studies of prothrombin in newborns. Pediatric Research 13, 12621265.CrossRefGoogle ScholarPubMed
Nail, P. A., Thomas, M. R. & Eakin, R. (1980). The effect of thiamin and riboflavin supplementation on the level of those vitamins in human breast milk and urine. American Journal of Clinical Nutrition 33, 198204.CrossRefGoogle ScholarPubMed
Neal, P. R., Erickson, P., Baenziger, J. C., Olson, J. & Lemons, J. A. (1986). Serum vitamin E levels in the very low birthweight infant during oral supplementation. Pediatrics 77, 636640.CrossRefGoogle ScholarPubMed
O'Connor, D. L., Tamura, T. & Picciano, M. F. (1991). Pteroylglutamates in human milk. American Journal of Clinical Nutrition 53. 930934.CrossRefGoogle Scholar
Olson, J. A. (1987a). Recommended dietary intakes (RDI) of vitamin K in humans. American Journal of Clinical Nutrition 45, 687692.CrossRefGoogle ScholarPubMed
Olson, J. A. (1987 a). Recommended dietary intakes (RDI) of vitamin A in humans. American Journal of Clinical Nutrition 45. 704716.CrossRefGoogle ScholarPubMed
Paul, A. A. & Southgate, D. A. T. (1987). McCance and Widdowson's The Composition of Foods. 4th edn. London: HMSO.Google Scholar
Picciano, M. F., Calkins, E. J., Garrick, J. R. & Deering, R. H. (1981). Milk and mineral intake of breast-fed infants. Acta Paediatrica Scandinavica 70, 189194.CrossRefGoogle Scholar
Pietschnig, B., Haschke, F., Vanura, H., Shearer, M., Veitl, V., Kellner, S. & Schuster, E. (1993). Vitamin K in breast milk: no influence of maternal dietary intake. European Journal of Clinical Nutrition 47, 209215.Google ScholarPubMed
Pittard, W. B., Geddes, K. M., Hulsey, T. C. & Hollis, B. W. (1991). How much vitamin D for neonates? American Journal of Diseases of Children 145, 11471149.Google ScholarPubMed
Powers, H. J. (1995). Riboflavin-iron interactions with particular emphasis on the gastrointestinal tract. Proceedings of the Nutrition Society 54, 509517.CrossRefGoogle ScholarPubMed
Powers, H. J., Gibson, A. T., Bates, C. J., Prirnhak, R. A. & Beresford, J. K. (1994). Dose vitamin C intake influence the rate of tyrosine catabolism in premature babies? Annals of Nutrition and Metabolism 38, 166173.CrossRefGoogle Scholar
Powers, H. J., Loban, A. L., Silvers, K. M. & Gibson, A. T. (1995). Vitamin C at concentrations observed in premature babies inhibits the ferroxidase activity of caeruloplasmin. Free Radical Research 22, 5765.CrossRefGoogle ScholarPubMed
Powers, H. J., Weaver, L. T., Austin, S. & Beresford, J. K. (1993). A proposed intestinal mechanism for the effect of riboflavin deficiency on iron loss in the rat. British Journal of Nutrition 69, 553561.CrossRefGoogle ScholarPubMed
Powers, H. J., Weaver, L. T., Austin, S., Wright, A. J. A. & Fairweather-Tait, S. J. (1991). Riboflavin deficiency in the rat: effects on iron utilization and loss. British Journal of Nutrition 65, 487496.CrossRefGoogle ScholarPubMed
Pratt, J. P., Hamil, B. M., Moyer, E. Z., Kaucher, M., Roderuck, C., Coryell, M. N., Miller, S., Williams, H. H. & Macy, I. G. (1951). Metabolism of women during the reproductive cycle. 18. The effect of multi vitamin supplements on the secretion of B vitamins in human milk. Journal of Nutrition 44. 141157.CrossRefGoogle Scholar
Prentice, A. M., Roberts, S. B., Prentice, A., Paul, A. A., Watkinson, M., Watkinson, A. A. & Whitehead, R. G. (1983). Dietary supplementation of lactating Gambian Women. I. Effect on breast milk volume and quality. Human Nutrition: Clinical Nutrition 37C, 5364.Google Scholar
Rajalakshmi, R., Deodhar, A. D. & Ramakrishnan, C. V. (1965). Vitamin C secretion during lactation. Acta Paediatrica Scandinavica 54, 375382.CrossRefGoogle ScholarPubMed
Reeve, L. A., Chesney, R. W. & DeLuca, H. F. (1982). Vitamin D of human milk: identification of biologically active forms. American Journal of Clinical Nutrition 36, 122126.CrossRefGoogle ScholarPubMed
Roberts, C. C., Chan, G. M., Folland, D., Rayburn, C. & Jackson, R. (1981). Adequate bone mineralization in breast fed infants. Journal of Pediatrics 99, 192196.CrossRefGoogle ScholarPubMed
Roderuck, C. E., Coryell, M. N., Williams, H. H. & Macy, I. G. (1945). Human milk studies. 24. Free and total riboflavin contents of colostrum and mature human milk. American Journal of Diseases of Children 70, 171175.Google Scholar
Roepke, J. L. B. & Kirksey, A. (1979). Vitamin B6 nutriture during pregnancy and lactation. 2. The effect of long term use of oral contraceptives. American Journal of Clinical Nutrition 32, 22572264.CrossRefGoogle Scholar
Salmenperä, L., Perheentupa, J. & Siimes, M. A. (1986). Folate nutrition is optimal in exclusively breast-fed infants but inadequate in some of their mothers and formula-fed infants. Journal of Pediatric Gastroenterology and Nutrition 5, 283289.Google ScholarPubMed
Sandberg, D. P., Begley, J. A. & Hall, C. A. (1981). The content, binding, and forms of vitamin B12 in milk. American Journal of Clinical Nutrition 34, 17171724.CrossRefGoogle ScholarPubMed
Schanler, R. (1989). Water soluble vitamins. In Textbook of Pediatric Gastroenterology and Nutrition in Infancy, pp. [Lebenthal, E., editor]. New York: Raven Press Ltd.Google Scholar
Schanler, R. J. & Nichols, B. L. (1985). The water soluble vitamins C, B1, B2, B6, and niacin. In Vitamin and Mineral Requirements in Preterm Infants, pp. 3962. [Tsang, R. C., editor]. New York: Marcel Dekker Inc.Google Scholar
Schubiger, G., Tonz, O., Gruter, J., & Shearer, M. J. (1993). Vitamin K1 concentration in breast-fed neonates after oral or intramuscular administration of a single dose of a new mixed-micellar preparation of phylloquinone. Journal of Pediatric Gastroenterology and Nutrition 16, 435439.Google ScholarPubMed
Schwarz, K. B. (1989). Requirements and absorption of fat-soluble vitamins during infancy In Textbook of Gastroenterology and Nutrition in Infancy, 2nd edn, pp. 347–36. [Lebenthal, E., editor]. New York: Raven Press Ltd.Google Scholar
Shenai, J. P., Kennedy, K. A., Chytil, F. & Stahlman, M. T. (1987). Clinical trial of vitamin A supplementation in infants susceptible to bronchopulmonary dysplasia. Journal of Pediatrics 111, 269277.CrossRefGoogle ScholarPubMed
Silvers, K. M. (1996). The importance of circulating antioxidants to outcome in premature infants. PhD thesis, University of Sheffield.Google Scholar
Silvers, K. M., Gibson, A. T. & Powers, H. J. (1994). High plasma vitamin C concentrations at birth associated with low antioxidant status and poor outcome in premature infants. Archives of Disease in Childhood 71. F40F44.CrossRefGoogle ScholarPubMed
Silvers, K. M., Powers, H. J. & Gibson, A. T. (1993). Is the antioxidant activity of premature baby plasma modulated by plasma ascorbic acid concentrations? Proceedings of the Nutrition Society 52, 313A.Google Scholar
Sisson, T. R. C. (1987). Photodegradation of riboflavin in neonates. Federation Proceedings 46, 18831885.Google ScholarPubMed
Smith, A. M., Picciano, M. F. & Deering, R. H. (1983). Folate supplementation during lactation: maternal folate status, human milk folate content, and their relationship to infant folate status. Journal of Pediatric Gastroenterology and Nutrition 2, 622628.CrossRefGoogle ScholarPubMed
Sneed, S. M., Zane, C. & Thomas, M. R. (1981). The effects of ascorbic acid, vitamin B6, vitamin B12 and folic acid supplementation on the breast milk and maternal nutritional status of low socioeconomic lactating women. American Journal of Clinical Nutrition 34, 13381346.CrossRefGoogle ScholarPubMed
Song, W. O., Chan, G. M., Wyse, B. W. & Hansen, R. G. (1984). Effect of pantothenic acid status on the content of the vitamin in human milk. American Journal of Clinical Nutrition 40, 317324.CrossRefGoogle ScholarPubMed
Specker, B. L., Black, A., Allen, L. & Morrow, F. (1990). Vitamin B-12: low milk concentrations are related to low serum concentrations in vegetarian women and to methylmalonic aciduria in their infants. American Journal of Clinical Nutrition 52, 10731076.CrossRefGoogle ScholarPubMed
Styslinger, L. & Kirksey, A. (1985). Effects of different levels of vitamin B6 supplementation on vitamin B6 concentrations in human milk and vitamin B6 intakes of breast-fed infants. American Journal of Clinical Nutrition 41, 2131.CrossRefGoogle Scholar
Takeuchi, A., Okano, T., Tsugawa, N., Katayama, M., Mimura, Y., Kobayashi, T., Kodama, S. & Hatsuo, T. (1988). Determination of vitamin D and its metabolites in human and cow's milk. Journal of Micronutrient Analysis 4, 193208.Google Scholar
Tamura, T., Yoshimura, Y. & Arakawa, T. (1980). Human milk folate and folate status in lactating mothers and their infants. American Journal of Clinical Nutrition 33, 193197.CrossRefGoogle ScholarPubMed
Thomas, M. R., Kawamoto, J., Sneed, S. M. & Eakin, R. (1979). The effects of vitamin C, vitamin B6, and vitamin B12 supplementation on the breast milk and maternal status of well-nourished women. American Journal of Clinical Nutrition 32, 16791685.CrossRefGoogle ScholarPubMed
Thomas, M. R., Pearsons, M. H., Demkowicz, M., Chan, I. M. & Lewis, C. G. (1981). Vitamin A and vitamin E concentration of the milk from mothers of pre-term infants and milk of mothers of full term infants. Acta Vitaminologica et Enzimologica 3, 135144.Google ScholarPubMed
Thomas, M. R., Sneed, S. M., Wei, C., Nail, P. A., Wilson, M. & Sprinkle, E. E. (1980). The effects of vitamin C, Vitamin B6, vitamin B12, folk acid, riboflavin, and thiamin on the breast milk and maternal status of well-nourished women at 6 months post partum. American Journal of Clinical Nutrition 33, 21512156.CrossRefGoogle Scholar
Trugo, N. M. F. & Sardinha, F. (1994). Cobalamin and cobalamin-binding capacity in human milk. Nutrition Research 14, 2333.CrossRefGoogle Scholar
Udipi, S. A., Kirksey, A. & Roepke, J. L. B. (1987). Diurnal variations in folacin levels in human milk: use of a single sample to represent folacin concentration in milk during a 24-h period. American Journal of Clinical Nutrition 45, 770779.CrossRefGoogle ScholarPubMed
van Zoeren-Grobben, D., Schrijver, J., van den Berg, H. & Berger, H. M. (1987). Human milk vitamin content after pasteurisation, storage, or tube-feeding. Archives of Disease in Childhood 62, 161165.CrossRefGoogle ScholarPubMed
Venkatachalam, P. S., Belavady, B. & Gopalan, C. (1962). Studies on vitamin A nutritional status of mothers and infants in poor communities of India. Journal of Pediatrics 61, 262268.CrossRefGoogle ScholarPubMed
Vieth, R. (1990). The mechanisms of vitamin D toxicity. Bone and Mineral 11, 267272.CrossRefGoogle ScholarPubMed
Villard, L. & Bates, C. J. (1987). Effect of vitamin A supplementation on plasma and breast milk vitamin A levels in poorly nourished Gambian women. Human Nutrition: Clinical Nutrition 41C, 4758.Google Scholar
Von Kries, R., Shearer, M., McCarthy, P. T., Haug, M., Harzer, G. & Göbel, U. (1987). Vitamin K1 content of maternal milk: influence of the stage of lactation, lipid composition, and vitamin K1 supplements given to the mother. Pediatric Research 22, 513517.CrossRefGoogle ScholarPubMed
Wallgren, A. (1945). Breast milk consumption of healthy full-term infants. Acta Paediatrica Scandinavica 32, 778790.CrossRefGoogle ScholarPubMed
Watney, P. J. M., Chance, G. W., Scott, P. & Thompson, J. M. (1971). Maternal factors in neonatal hypocalcaemia: a study in three ethnic groups. British Medical Journal ii, 432436.CrossRefGoogle Scholar
Whitehead, R. G. & Paul, A. A. (1981). Infant growth and human milk requirements. Lancet ii, 161163.CrossRefGoogle Scholar
Williams, E. A., Powers, H. J. & Rumsey, R. D. E. (1995). Morphological changes in the rat small intestine in response to riboflavin depletion. Pediatrics 73, 141146.Google ScholarPubMed
Williams, E. A., Rumsey, R. D. E. & Powers, H. J. (1996). Cytokinetic and structural responses of the rat small intestine to riboflavin depletion. British Journal of Nutrition 75, 315326.CrossRefGoogle ScholarPubMed
Wyatt, D. T., Noetzel, M. J. & Hillman, R. E. (1987). Infantile beriberi presenting as subacute necrotizing encephalomyelopathy. Journal of Pediatrics 110, 888891.CrossRefGoogle ScholarPubMed
Yates, C. A., Evans, G. E. & Powers, H. J. (1997). Very early changes in gut morphology in response to riboflavin depletion. Proceedings of the Nutrition Society (in press).Google Scholar