Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-31T23:24:11.231Z Has data issue: false hasContentIssue false

Trace Element Nutrition and Bone Metabolism

Published online by Cambridge University Press:  14 December 2007

John H. Beattie
Affiliation:
Division of Biochemical Sciences, Rowett Research Institute, Bucksburn, Aberdeen
Alison Avenell
Affiliation:
Division of Biochemical Sciences, Rowett Research Institute, Bucksburn, Aberdeen
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Aaron, J. E., de Vernejoul, M.-C. & Kanis, J. A. (1991). The effect of sodium fluoride on trabecular architecture. Bone 12, 307310.Google Scholar
Adeniyi, F. A. & Heaton, F. W. (1980). The effect of zinc deficiency on alkaline phosphatase (EC 3.1.3.1) and its isoenzymes. British Journal of Nutrition 43, 561569.Google Scholar
Aitken, J. M. (1976). Factors affecting the distribution of zinc in the human skeleton. Calcified Tissue Research 20, 2330.Google Scholar
Anderson, C. & Danylchuk, K. D. (1977). The effect of chronic low level lead intoxication on the Haversian remodeling system in dogs. Laboratory Investigation 37, 466469.Google Scholar
Angle, C. R., Thomas, D. J. & Swanson, S. A. (1990). Lead inhibits the basal and stimulated responses of a rat osteoblast-like cell line ROS 17/2.8 to 1α25-dihydroxyvitamin D3 and IGF-I. Toxicology and Applied Pharmacology 103, 281287.Google Scholar
Angus, R. M., Sambrook, P. N., Pocock, N. A. & Eisman, J. A. (1988). Dietary intake and bone mineral density. Bone and Mineral 4, 265277.Google Scholar
Asling, C. W. & Hurley, L. S. (1963). The influence of trace elements on the skeleton. Clinical Orthopaedics 27, 213264.Google ScholarPubMed
Atik, O. S. (1983). Zinc and senile osteoporosis. Journal of the American Geriatrics Society 31, 790791.Google Scholar
Baker, D. H. & Halpin, K. M. (1991). Manganese and iron interrelationship in the chick. Poultry Science 70, 146152.Google Scholar
Barton, J. C. & Conrad, M. E. (1981). Effect of phosphate on the absorption and retention of lead in the rat. American Journal of Clinical Nutrition 34, 21922198.Google Scholar
Baslé, M. F., Mauras, Y., Audran, M., Clochon, P., Rebel, A. & Allain, P. (1990). Concentration of bone elements in osteoporosis. Journal of Bone and Mineral Research 5, 4147.Google Scholar
Bawden, J. W. & Hammarström, L. E. (1975). Distribution of cadmium in developing teeth and bone of young rats. Scandinavian Journal of Dental Research 83, 179186.Google Scholar
Beattie, J. H. (1992). No effect of dietary boron on urinary oestrogen excretion in rats. Proceedings of the Nutrition Society 51, 25AGoogle Scholar
Beattie, J. H. & Macdonald, A. (1991). Effect of boron on bone metabolism in rats. In Trace Elements in Man and Animals 7, pp. 26-29 to 26-30 [Momcilovic, B., editor]. Zagreb: IMI Press.Google Scholar
Beattie, J. H. & Peace, H. (1992). The influence of a low boron diet and boron supplementation on bone, major mineral and sex steroid metabolism in postmenopausal women. British Journal of Nutrition (In the Press)Google Scholar
Beattie, J. H. & Weersink, E. (1992). Borate and molybdate inhibition of catechol estrogen and pyrocatechol methylation by catechol-O-methyltransferase. Journal of Inorganic Biochemistry 46, 153160.Google Scholar
Bhattacharyya, M. H., Whelton, B. D., Peterson, D. P., Carnes, B. A., Moretti, E. S., Toomey, J. M. & Williams, L. L. (1988 a). Skeletal changes in multiparous mice fed on nutrient-sufficient diet containing cadmium. Toxicology 50, 193204.CrossRefGoogle ScholarPubMed
Bhattacharyya, M. H., Whelton, B. D., Stern, P. H. & Peterson, D. P. (1988 b). Cadmium accelerates bone loss in ovariectomized mice and fetal rat limb bones in culture. Proceedings of the National Academy of Sciences of the USA 85, 87618765.Google Scholar
Bock, M. A., Powey, M. & Ortiz, M. (1990). Fecal and urinary excretion of calcium (Ca), magnesium (Mg) and manganese (Mn) in female rats fed high and low levels of calcium and boron (B). FASEB Journal 4, A520 (Abstract).Google Scholar
Bockman, R. S., Repo, M. A., Warrell, R. P., Pounds, J. G., Schidlovsky, G., Gordon, B. M. & Jones, K. W. (1990 a). Distribution of trace levels of therapeutic gallium in bone as mapped by synchrotron X-ray microscopy. Proceedings of the National Academy of Sciences of the USA 87, 41494153.Google Scholar
Bockman, R. S., Warrell, R. P., Levine, B., Pounds, J. G., Schidlovsky, G. & Jones, K. W. (1990 b). Trace elemental analysis in bone using X-ray microscopy. Basic Life Sciences 55, 293296.Google ScholarPubMed
Boivin, G., Grousson, B. & Meunier, P. J. (1991). X-ray microanalysis of fluoride distribution in microfracture calluses in cancellous iliac bone from osteoporotic patients treated with fluoride and untreated. Journal of Bone and Mineral Research 6, 11831190.Google Scholar
Bolze, M. S., Reeves, R. D., Lindbeck, F. E. & Elders, M. J. (1987). Influence of zinc on growth, somatomedin, and glycosaminoglycan metabolism in rats. American Journal of Physiology 252, E21E26.Google Scholar
Bonner, F. W., King, L. J. & Parke, D. V. (1980). Cadmium-induced reduction of bone alkaline phosphatase and its prevention by zinc. Chemico-Biological Interactions 29, 369372.Google Scholar
Bonucci, E., Barckhaus, R. H., Silvestrini, G., Ballanti, P. & Di Lorenzo, G. (1983). Osteoclast changes induced by lead poisoning (saturnism). Applied Pathology 1, 241250.Google Scholar
Bonucci, E. & Silvestrini, G. (1988). Ultrastructural studies in experimental lead intoxication. Contributions to Nephrology 64, 93101.Google Scholar
Bradley, B., Singleton, M. & Po, A. L. (1989). Bismuth toxicity – a reassessment. Journal of Clinical Pharmacy and Therapeutics 14, 423441.Google Scholar
Briançon, D., d'Aranda, P., Quillet, P., Duplan, B., Chapuy, M. C., Arlot, M. & Meunier, P. J. (1990). Comparative study of fluoride bioavailability following the administration of sodium fluoride alone and in combination with different calcium salts. Journal of Bone and Mineral Research 5, (Suppl. 1), S71S73.Google Scholar
Bridges, C. H. & Moffitt, P. G. (1990). Influence of variable content of dietary zinc on copper metabolism of weanling foals. American Journal of Veterinary Research 51, 275280.Google Scholar
Brown, T. F., McCormick, M. E., Morris, D. R. & Zeringue, L. K. (1989). Effects of dietary boron on mineral balance in sheep. Nutrition Research 9, 503512.Google Scholar
Butler, E. J., Nisbet, D. I. & Robertson, J. M. (1957). Osteoporosis in lambs in a lead mining area. I. A study of the naturally occurring disease. Journal of Comparative Pathology 67, 378396.Google Scholar
Caffey, J. (1938). Lead poisoning associated with active rickets. Report of a case with absence of lead lines in the skeleton. American Journal of Diseases of Children 55, 798806.Google Scholar
Calhoun, L. A., Livesey, D. L., Mailer, K. & Addetia, R. (1985). Interaction of lead ions with bovine carbonic anhydrase: further studies. Journal of Inorganic Biochemistry 25, 261275.Google Scholar
Canalis, E. (1985). Effect of sodium vanadate on deoxyribonucleic acid and protein syntheses in cultured rat calvariae. Endocrinology 116, 855862.Google Scholar
Carlisle, E. M. (1979). A silicon–molybdenum interrelationship in vivo. Federation Proceedings 38, 553 (Abstract).Google Scholar
Carlisle, E. M. (1985). A metabolic role for silicon in cartilage growth. In Trace Elements in Man and Animals 5, pp. 128130 [Mills, C. F., Bremner, I. and Chesters, J. K., editors]. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Carlisle, E. M. (1986). Silicon. In Trace Elements in Human and Animal Nutrition. Vol. 2, pp. 373390 [Mertz, W., editor]. San Diego, CA: Academic Press.Google Scholar
Carlisle, E. M. (1988). Silicon as a trace nutrient. Science of the Total Environment 73, 95106.Google Scholar
Carlisle, E. M., Berger, J. W. & Alpenfels, W. F. (1981). A silicon requirement for prolyl hydroxylase activity. Federation Proceedings 40, 886 (Abstract).Google Scholar
Carlisle, E. M. & Curran, M. J. (1988). A silicon and aluminium interaction in the rat. In Trace Elements in Man and Animals 6, pp. 279280 [Hurley, L. S., Keen, C. L., Lönnerdal, B. and Rucker, R. B., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Carnes, W. H. (1971). Role of copper in connective tissue metabolism. Federation Proceedings 30, 9951000.Google Scholar
Carter, D. R. & Beaupré, G. S. (1990). Effects of fluoride treatment on bone strength. Journal of Bone and Mineral Research 5, (Suppl. 1) S177S184.Google Scholar
Christoffersen, J., Christoffersen, M. R., Larsen, R., Rostrup, E., Tingsgaard, P., Andersen, O. & Grandjen, P. (1988). Interaction of cadmium ions with calcium hydroxyapatite crystals: a possible mechanism contributing to the pathogenesis of cadmium-induced bone diseases. Calcified Tissue International 42, 331339.Google Scholar
Ciancaglini, P., Pizauro, J. M., Curti, C., Tedesco, A. C. & Leone, F. A. (1990). Effect of membrane moiety and magnesium ions on the inhibition of matrix-induced alkaline phosphatase by zinc ions. International Journal of Biochemistry 22, 747751.CrossRefGoogle ScholarPubMed
Clegg, F. G. & Rylands, J. M. (1966). Osteoporosis and hydronephrosis of young lambs following the ingestion of lead. Journal of Comparative Pathology 76, 1522.Google Scholar
Compston, J. E., Chadha, S. & Merrett, A. L. (1980). Osteomalacia developing during treatment of osteoporosis with sodium fluoride and vitamin D. British Medical Journal 281, 910911.Google Scholar
Conlan, D., Korula, R. & Tallentire, D. (1990). Serum copper levels in elderly patients with femoral-neck fractures. Age and Ageing 19, 212214.Google Scholar
Cournot-Witmer, G., Bourdeau, A., Lieberherr, M., Thil, C. L., Plachot, J. J., Enault, G., Bourdon, R. & Balsan, S. (1987). Bone modeling in gallium nitrate-treated rats. Calcified Tissue International 40, 270275.Google Scholar
da Cunha Ferreira, R. M., Marquiegui, I. M. & Elizaga, I. V. (1989). Teratogenicity of zinc deficiency in the rat: study of the fetal skeleton. Teratology 39, 181194.Google Scholar
Dambacher, M. A., Ittner, J. & Ruegsegger, P. (1986). Fluoride therapy of post-menopausal osteoporosis. Bone 7, 199205.Google Scholar
Danks, D. M. (1987). Copper deficiency in infants with particular reference to Menkes' disease. In Copper in Animals and Man, Vol. 2, pp. 2951 [McC. Howell, J. and Gawthorne, J. M., editors]. Boca Raton, FL: CRC Press.Google Scholar
Davis, G. K. & Mertz, W. (1987). Copper. In Trace Elements in Human and Animal Nutrition, Vol. 1, pp. 301364 [Mertz, W., editor]. San Diego, CA: Academic Press.Google Scholar
Dollwet, H. H. & Sorenson, J. R. (1988). Roles of copper in bone maintenance and healing. Biological Trace Element Research 18, 3948.Google Scholar
Dong-Xu, M. (1987). Pathology and selenium deficiency in Kaschin-Beck disease. In Selenium in Biology and Medicine, pp. 924933 [Combs, G. F., Levander, O. A., Spallholz, J. E. and Oldfield, J. E., editors]. New York: Van Nostrand Reinhold.Google Scholar
Donnelly, R., Bockman, R. S., Doty, S. B. & Boskey, A. L. (1991). Bone particles from gallium-treated rats are resistant to resorption in vivo. Bone and Mineral 12, 167179.CrossRefGoogle ScholarPubMed
Drüeke, T., Lieberherr, M. & Cournot, G. (1988). Pathophysiology of aluminum-induced bone disease. Contributions to Nephrology 64, 109112.Google Scholar
Ebina, Y., Okada, S., Hamazaki, S., Toda, Y. & Midorikawa, O. (1991). Impairment of bone formation with aluminum and ferric nitrilotriacetate complexes. Calcified Tissue International 48, 2836.Google Scholar
Edelstein, S., Fullmer, C. S. & Wasserman, R. H. (1984). Gastrointestinal absorption of lead in chicks: involvement of the cholecalciferol endocrine system. Journal of Nutrition 114, 692700.Google Scholar
Ellender, G. & Ham, K. N. (1987). Connective tissue responses to some heavy metals. II. Lead: histology and ultrastructure. British Journal of Experimental Pathology 68, 291307.Google Scholar
Farley, J. R., Tarbaux, N., Hall, S. & Baylink, D. J. (1990). Mitogenic action(s) of fluoride on osteoblastic line cells: determinants of the response in vitro. Journal of Bone and Mineral Research 5 (Suppl. 1), S107S113.Google Scholar
Farquharson, C., Duncan, A. & Robins, S. P. (1989). The effects of copper deficiency on the pyridinium crosslinks of mature collagen in the rat skeleton and cardiovascular system. Proceedings of the Society for Experimental Biology and Medicine 192, 166171.Google Scholar
Favus, M. J. [editor] (1990). Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Kelseyville, CA: American Society for Bone and Mineral Research.Google Scholar
Fell, B. F. (1987). The pathology of copper deficiency in animals. In Copper in Animals and Man, Vol. 2, pp. 128 [McC. Howell, J. and Gawthorne, J. M., editors]. Boca Raton, FL: CRC Press.Google Scholar
Fullmer, C. S. & Rosen, J. F. (1990). Effect of dietary calcium and lead status on intestinal calcium absorption. Environmental Research 51, 9199.Google Scholar
Fulton, B. & Jeffery, E. H. (1990). Absorption and retention of aluminum from drinking water. 1. Effect of citric and ascorbic acids on aluminum tissue levels in rabbits. Fundamental and Applied Toxicology 14, 788796.Google Scholar
Godowicz, B. & Godowicz, W. (1990). Effect of cadmium on the thickness of compact bone and on bone repair in cadmium-sensitive mice. Folia Biologica (Krakow) 38, 6366.Google Scholar
Grynpas, M. D. (1990). Fluoride effects on bone crystals. Journal of Bone and Mineral Research 5 (Suppl. 1), S169S175.Google Scholar
Hall, T. J. & Chambers, T. J. (1990). Gallium inhibits bone resorption by a direct effect on osteoclasts [see comments]. Bone and Mineral 8, 211216.Google Scholar
Hambidge, K. M., Neldner, K. H. & Walravens, P. A. (1975). Zinc, acrodermatitis enteropathica, and congenital malformations. Lancet i, 577578.Google Scholar
Hass, G. M., Landerholm, W. & Hemmens, A. (1967). Inhibition of intercellular matrix synthesis during ingestion of inorganic lead. American Journal of Pathology 50, 815847.Google Scholar
Haumont, S. (1961). Distribution of zinc in bone tissue. Journal of Histochemistry and Cytochemistry 9, 141145.Google Scholar
Hegsted, M., Keenan, M. J., Siver, F. & Wozniak, P. (1991). Effect of boron on vitamin D deficient rats. Biological Trace Element Research 28, 243255.Google Scholar
Henrikson, P.-A., Lutwak, L., Krook, L., Skogerboe, R., Kallfelz, F., Belanger, L. F., Marier, J. R., Sheffy, B. E., Romanus, B. & Hirsch, C. (1970). Fluoride and nutritional osteoporosis: physicochemical data on bones from an experimental study in dogs. Journal of Nutrition 100, 631642.Google Scholar
Herzberg, M., Foldes, J., Steinberg, R. & Menczel, J. (1990). Zinc excretion in osteoporotic women. Journal of Bone and Mineral Research 5, 251257.Google Scholar
Hill, C. H. (1985). The effect of dietary mercury on vanadium toxicity in the chick. In Trace Elements in Man and Animals 5, pp. 539541 [Mills, C. F., Bremner, I. and Chesters, J. K., editors]. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Hill, C. H. (1990 a). Effect of dietary copper on vanadate toxicity in chicks. Biological Trace Element Research 23, 1723.Google Scholar
Hill, C. H. (1990 b). The effect of dietary mercury on vanadate toxicity in the chick. Biological Trace Element Research 23, 1116.Google Scholar
Hill, C. H. (1990 c). Interaction of vanadate and chloride in chicks. Biological Trace Element Research 23, 110.Google Scholar
Howard, G., Andon, M., Saltman, P. & Strause, L. (1990). Serum copper concentration, dietary calcium intake and bone density in postmenopausal women: cross-sectional measurements. Journal of Bone and Mineral Research 5, S177 (Abstract).Google Scholar
Hrudey, S. E., Soskolne, C. L., Berkel, J. & Fincham, S. (1990). Drinking water fluoridation and osteosarcoma. Canadian Journal of Public Health 81, 415416.Google Scholar
Huber, A. M. & Gershoff, S. N. (1973). Effects of dietary zinc on zinc enzymes in the rat. Journal of Nutrition 103, 11751181.Google Scholar
Hunt, C. D. (1989). Dietary boron modified the effects of magnesium and molybdenum on mineral metabolism in the cholecalciferol-deficient chick. Biological Trace Element Research 22, 201220.Google Scholar
Hunt, C. D. & Nielsen, F. H. (1982). Interaction between boron and cholecalciferol in the chick. In Trace Element Metabolism in Man and Animals (Fourth International Symposium, 1981), pp. 597600 [Gawthorne, J. M., McC. Howell, J. and White, C. L., editors]. Canberra City: Australian Academy of Science.Google Scholar
Hunt, C. D., Shuler, T. R. & Nielsen, F. H. (1983). Effect of boron on growth and mineral metabolism. In Spurenelement Symposium, pp. 149156 [Anke, M., Baumann, W., Braunlich, H. and Bruckner, C., editors] Jena: Friedrich Schiller Universität.Google Scholar
Hurley, L. S. (1981). Teratogenic aspects of manganese, zinc, and copper nutrition. Physiological Reviews 61, 249295.Google Scholar
Hurley, L. S. & Shyy-Hwa, T. (1972). Alleviation of teratogenic effects of zinc deficiency by simultaneous lack of calcium. American Journal of Physiology 222, 322325.Google Scholar
Huser, H., Gerber, L., Eichenberger, P., Waelti, E. & Cottier, H. (1988). Short-lasting accumulation in osteoid bone seams of radioactive iron injected as citrate into mice. American Journal of Pathology 131, 339343.Google Scholar
Iguchi, H., Kasai, R., Okumura, H., Yamamuro, T. & Kagan, H. M. (1990). Effect of dietary cadmium and/or copper on the bone lysyl oxidase in copper-deficient rats relative to the metabolism of copper in the bone. Bone and Mineral 10, 5159.Google Scholar
Iguchi, H. & Sano, S. (1982). Effect of cadmium on the bone collagen metabolism of the rat. Toxicology and Applied Pharmacology 62, 126136.CrossRefGoogle Scholar
Jowsey, J., Riggs, B. L., Kelly, P. J. & Hoffman, D. L. (1972). Effect of combined therapy with sodium fluoride, vitamin D and calcium in osteoporosis. American Journal of Medicine 53, 4349.Google Scholar
Kaji, T., Kawatani, R., Takata, M., Hoshino, T., Miyahara, T., Kozuka, H. & Koizumi, F. (1988 a). The effects of cadmium, copper or zinc on formation of embryonic chick bone in tissue culture. Toxicology 50, 303316.Google Scholar
Kaji, T., Takata, M., Hoshino, T., Miyahara, T., Kozuka, H., Kurashige, Y. & Koizumi, F. (1988 b). Role of zinc in protection against cadmium-induced toxicity in formation of embryonic chick bone in tissue culture. Toxicology Letters 44, 219227.Google Scholar
Kaji, T., Takata, M., Miyahara, T., Kozuka, H. & Koizumi, F. (1990). Interaction of zinc with cadmium and copper on ossification of embryonic chick bone in tissue culture. Archives of Environmental Contamination and Toxicology 19, 653656.Google Scholar
Kaji, T., Takata, M., Miyahara, T., Kozuka, H. & Koizumi, F. (1991). Interaction between cadmium and copper on ossification of embryonic chick bone in tissue culture. Toxicology Letters 55, 255262.Google Scholar
Kaji, T., Yamada, H., Hoshino, T., Miyahara, T., Kozuka, H. & Naruse, Y. (1986). A possible mechanism of cadmium-copper interaction in embryonic chick bone in tissue culture. Toxicology and Applied Pharmacology 86, 243252.Google Scholar
Kawashima, H., Nomiyama, H. & Nomiyama, K. (1988). Chronic exposure to cadmium did not impair vitamin D metabolism in monkeys. Environmental Research 46, 4858.Google Scholar
Kido, T., Honda, R., Tsuritani, I., Ishizaki, M., Yamada, Y., Nakagawa, H., Nogawa, K. & Dohi, Y. (1991). Serum levels of bone Gla-protein in inhabitants exposed to environmental cadmium. Archives of Environmental Health 46, 4349.Google Scholar
Kido, T., Nogawa, K., Honda, R., Tsuritani, I., Ishizaki, M., Yamada, Y. & Nakagawa, H. (1990). The association between renal dysfunction and osteopenia in environmental cadmium-exposed subjects. Environmental Research 51, 7182.CrossRefGoogle ScholarPubMed
King, N., Odom, T. W., Sampson, H. W. & Pardue, S. L. (1991). In ovo administration of boron alters bone mineralization of the chicken embryo. Biological Trace Element Research 30, 4758.Google Scholar
Kleerekoper, M. & Balena, R. (1991). Fluorides and osteoporosis. Annual Review of Nutrition 11, 309324.CrossRefGoogle ScholarPubMed
Kleerekoper, M., Peterson, E., Phillips, E., Nelson, D. A., Tilley, B. & Parfitt, A. M. (1989). Continuous sodium fluoride therapy does not reduce vertebral fracture rate. Journal of Bone and Mineral Research 4 (Suppl. 1), S376.Google Scholar
Klein, G. L. (1990). Nutritional aspects of aluminium toxicity. Nutrition Research Reviews 3, 117141.Google Scholar
Klein, R. F., Li, H. F., Sanderson, A. L., Vorderstrasse, B. & Wiren, K. M. (1991). Inhibitory effects of lead exposure on osteoblast function. Journal of Bone and Mineral Research 6 (Suppl. 1), S91.Google Scholar
Knight, D. A., Weisbrode, S. E., Schmall, L. M., Reed, S. M., Gabel, A. A., Bramlage, L. R. & Tyznik, W. I. (1990). The effects of copper supplementation on the prevalence of cartilage lesions in foals. Equine Veterinary Journal 22, 426432.Google Scholar
Erratum Equine Veterinary Journal (1990) 23, 206Google Scholar
Koo, W. W., Succop, P. A., Bornschein, R. L., Krug-Wispe, S. K., Steinchen, J. J., Tsang, R. C. & Berger, O. G. (1991). Serum vitamin D metabolites and bone mineralization in young children with chronic low to moderate lead exposure. Pediatrics 87, 680687.Google Scholar
Kragstrup, J., Shijie, Z., Mosekilde, L. & Melsen, F. (1989). Effects of sodium fluoride, vitamin D, and calcium on cortical bone remodeling in osteoporotic patients. Calcified Tissue International 45, 337341.Google Scholar
Krebs, J. M., Schneider, V. S. & LeBlanc, A. D. (1988). Zinc, copper, and nitrogen balances during bed rest and fluoride supplementation in healthy adult males. American Journal of Clinical Nutrition 47, 509514.Google Scholar
Krishnamachari, K. A. (1987). Fluorine. In Trace Elements in Human and Animal Nutrition, Vol. 1, pp. 365415 [Mertz, W., editor]. San Diego, CA: Academic Press.Google Scholar
Krishnan, S. S., Lui, S. M., Jervis, R. E. & Harrison, J. E. (1990). Studies of cadmium uptake in bone and its environmental distribution. Biological Trace Element Research 26-27, 257261.Google Scholar
Lappalainen, R., Knuuttila, M., Lammi, S. & Alhava, E. M. (1983). Fluoride content related to the elemental composition, mineral density and strength of bone in healthy and chronically diseased persons. Journal of Chronic Diseases 36, 707713.Google Scholar
Lappalainen, R., Knuuttila, M., Lammi, S., Alhava, E. M. & Olkkonen, H. (1982). Zinc and copper content in human cancellous bone. Acta Orthopaedica Scandinavica 53, 5155.Google Scholar
Laraque, D., McCormick, M., Norman, M., Taylor, A., Weller, S. C. & Karp, J. (1990). Blood lead, calcium status, and behavior in preschool children. American Journal of Diseases of Children 144, 186189.Google Scholar
Larsson, S. E. & Piscator, M. (1971). Effect of cadmium on skeletal tissue in normal and calcium-deficient rats. Israel Journal of Medical Sciences 7, 495498.Google Scholar
Lau, K. H., Farley, J. R., Freeman, T. K. & Baylink, D. J. (1989). A proposed mechanism of the mitogenic action of fluoride on bone cells: inhibition of the activity of an osteoblastic acid phosphatase. Metabolism 38, 858868.Google Scholar
Lau, K. H., Tanimoto, H. & Baylink, D. J. (1988). Vanadate stimulates bone cell proliferation and bone collagen synthesis in vitro. Endocrinology 123, 28582867.Google Scholar
Lauwerys, R. (1979). Cadmium in man. In The Chemistry, Biochemistry and Biology of Cadmium (Topics in Environmental Health, Vol. 2), pp. 433455 [Webb, M., editor]. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Leach, R. M. (1971). Role of manganese in mucopolysaccharide metabolism. Federation Proceedings 30, 991994.Google Scholar
Leach, R. M. (1988). The role of trace elements in the development of cartilage matrix. In Trace Elements in Man and Animals 6, pp. 267271 [Hurley, L. S., Keen, C. L., Lönnerdal, B. and Rucker, R. B., editors]. New York: Plenum Press.Google Scholar
Leach, R. M. & Muenster, A.-M. (1962). Studies on the role of manganese in bone formation. I. Effect upon the mucopolysaccharide content of chick bone. Journal of Nutrition 78, 5156.Google Scholar
Leek, J. C., Keen, C. L., Vogler, J. B., Golub, M. S., Hurley, L. S., Hendrickx, A. G. & Gershwin, M. E. (1988). Long-term marginal zinc deprivation in rhesus monkeys. IV. Effects on skeletal growth and mineralization. American Journal of Clinical Nutrition 47, 889895.Google Scholar
Leek, J. C., Vogler, J. B., Gershwin, M. E., Golub, M. S., Hurley, L. S. & Hendrickx, A. G. (1984). Studies of marginal zinc deprivation in rhesus monkeys. V. Fetal and infant skeletal defects. American Journal of Clinical Nutrition 40, 12031212.Google Scholar
Long, G. J., Rosen, J. F. & Pounds, J. G. (1990 a). Lead impairs the production of osteocalcin by rat osteosarcoma (ROS 17/2.8) cells. Toxicology and Applied Pharmacology 106, 270277.Google Scholar
Long, G. J., Rosen, J. F. & Pounds, J. G. (1990 b). Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells. Toxicology and Applied Pharmacology 102, 346361.Google Scholar
Loveridge, N., Thomson, B. M. & Farquharson, C. (1992). Bone growth and turnover. In Bone Biology and Skeletal Disorders in Poultry [Whitehead, C. C., editor]. London: Butterworths (In the Press).Google Scholar
McCarthy, J. T., Hodgson, S. F., Fairbanks, V. F. & Moyer, T. P. (1991). Clinical and histologic features of iron-related bone disease in dialysis patients. American Journal of Kidney Diseases 17, 551561.Google Scholar
McCoy, H., Montgomery, C., Kenney, M. A. & Williams, L. (1990). Effects of boron supplementation on bones from rats fed low-calcium diets. FASEB Journal 4, A1050 (Abstract).Google Scholar
McGuire, S. M., Vanable, E. D., McGuire, M. H., Buckwalter, J. A. & Douglass, C. W. (1991). Is there a link between fluoridated water and osteosarcoma? Journal of the American Dental Association 122, 3845.Google Scholar
Mahaffey, K. R., Rosen, J. F., Chesney, R. W., Peeler, J. T., Smith, C. M. & DeLuca, H. F. (1982). Association between age, blood lead concentration, and serum 1,25-dihydroxycholecalciferol levels in children. American Journal of Clinical Nutrition 35, 13271331.Google Scholar
Mahoney, M. C., Nasca, P. C., Burnett, W. S. & Melius, J. M. (1991). Bone cancer incidence rates in New York State: time trends and fluoridated drinking water. American Journal of Public Health 81, 475479.Google Scholar
Malluche, H. H. & Faugère, M.-C. (1988). Aluminum-related bone disease. Blood Purification 6, 115.Google Scholar
Mamelle, N., Meunier, P. J., Dusan, R., Guillaume, M., Martin, J. L., Gaucher, A., Prost, A., Zeigler, G. & Netter, P. (1988). Risk-benefit ratio of sodium fluoride treatment in primary vertebral osteoporosis. Lancet ii, 361365.Google Scholar
Markowitz, M. E., Gundberg, C. M. & Rosen, J. F. (1988). Sequential osteocalcin (Oc) sampling as a biochemical marker of the success of treatment in moderately lead (Pb) poisoned children. Pediatric Research 23, 393A.Google Scholar
Massie, H. R., Aiello, V. R., Shumway, M. E. & Armstrong, T. (1990). Calcium, iron, copper, boron, collagen, and density changes in bone with aging in C57BL/6J male mice. Experimental Gerontology 25, 469481.Google Scholar
Masters, D. G., Keen, C. L., Lonnerdal, B. & Hurley, L. S. (1986). Release of zinc from maternal tissues during zinc deficiency or simultaneous zinc and calcium deficiency in the pregnant rat. Journal of Nutrition 116, 21482154.Google Scholar
Milachowski, K. A. (1988). Investigation of ischaemic necrosis of the femoral head with trace elements. International Orthopaedics 12, 323330.Google Scholar
Mithal, A., Gupta, S., Kumar, S., Gupta, R. K., Godbole, M., Moonga, B. S. & Zaidi, M. (1991). Endemic skeletal fluorosis in India: spectrum of the disease and a preliminary clinical workup of 100 patients. Journal of Bone and Mineral Research 6, (Suppl. 1), S131.Google Scholar
Miyahara, T., Oh-e, Y., Takaine, E. & Kozuka, H. (1983). Interaction between cadmium and zinc, copper, or lead in relation to the collagen and mineral content of embryonic chick bone in tissue culture. Toxicology and Applied Pharmacology 67, 4148.Google Scholar
Monteagudo, F. S., Cassidy, M. J. & Folb, P. I. (1989). Recent developments in aluminum toxicology. Medical Toxicology and Adverse Drug Experience 4, 116.Google Scholar
Murray, E. J. & Messer, H. H. (1981). Turnover of bone zinc during normal and accelerated bone loss in rats. Journal of Nutrition 111, 16411647.Google Scholar
Nielsen, F. H. (1988 a). Possible future implications of ultratrace elements in human health and disease. In Essential and Toxic Trace Elements in Human Health and Disease,, Vol. 18, pp. 277292 [Prasad, A. S., editor]. New York: Alan R. Liss Inc.Google Scholar
Nielsen, F. H. (1988 b). Boron – an overlooked element of potential nutritional importance. Nutrition Today Jan./Feb., 47.Google Scholar
Nielsen, F. H. (1990). New essential trace elements for the life sciences. Biological Trace Element Research 26–27, 599611.Google Scholar
Nielsen, F. H. & Hunt, C. D. (1989). Use of boron supplements to increase in vivo production of hydroxylated steroids. U. S. Patent Number 4,849,220.Google Scholar
Nielsen, F. H., Hunt, C. D., Mullen, L. M. & Hunt, J. R. (1987). Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women, FASEB Journal 1, 394397.Google Scholar
Nielsen, F. H., Mullen, L. M., Gallagher, S. K., Hunt, J. R., Hunt, C. D. & Johnson, L. K. (1988 a). Effects of dietary boron, aluminum and magnesium on serum alkaline phosphatase, calcium and phosphorus, and plasma cholesterol in postmenopausal women. In Trace Elements in Man and Animals 6, pp. 187188 [Hurley, L. S.Keen, C. L., Lönnerdal, B. and Rucker, R. B., editors]. New York: Plenum Press.Google Scholar
Nielsen, F. H., Shuler, T. R., Zimmerman, T. J. & Uthus, E. O. (1988 b). Dietary magnesium, manganese and boron affect the response of rats to high dietary aluminum. Magnesium 7, 133147.Google Scholar
Nielsen, F. H., Shuler, T. R., Zimmerman, T. J. & Uthus, E. O. (1988 c). Magnesium and methionine deprivation affect the response of rats to boron deprivation. Biological Trace Element Research 17, 91107.Google Scholar
Nielsen, F. H., Shuler, T. R., Zimmerman, T. J. & Uthus, E. O. (1990). Effect of boron depletion and repletion on blood indicators of calcium status in humans fed a magnesium-low diet. Journal of Trace Elements in Experimental Medicine 3, 4554.Google Scholar
Nimni, M. E. (1988). The extracellular matrix. In Trace Elements in Man and Animals 6, pp. 261266 [Hurley, L. S., Keen, C. L., Lönnerdal, B. and Rucker, R. B., editors]. New York: Plenum Press.Google Scholar
Nishiyama, S., Nakamura, T., Higashi, A. & Matsuda, I. (1991). Infusion of zinc inhibits serum calcitonin levels in patients with various zinc status. Calcified Tissue International 49, 179182.Google Scholar
Noda, M. & Kitagawa, M. (1990). A quantitative study of iliac bone histopathology on 62 cases with itai-itai disease. Calcified Tissue International 47, 6674.Google Scholar
Noda, M., Yasuda, M. & Kitagawa, M. (1991). Iron as a possible aggravating factor for osteopathy in itai-itai disease, a disease associated with chronic cadmium intoxication. Journal of Bone and Mineral Research 6, 245255.Google Scholar
Nogawa, K., Tsuritani, I., Kido, T., Honda, R., Yamada, Y. & Ishizaki, M. (1987). Mechanism for bone disease found in inhabitants environmentally exposed to cadmium: decreased serum 1α,25-dihydroxyvitamin D level. International Archives of Occupational and Environmental Health 59, 2130.Google Scholar
Nordberg, G. F., Mahaffey, K. R. & Fowler, B. A. (1991). Introduction and summary. International workshop on lead in bone: implications for dosimetry and toxicology. Environmental Health Perspectives 91, 37.Google Scholar
Ogoshi, K., Moriyama, T. & Nanzai, Y. (1989). Decrease in the mechanical strength of bones of rats administered cadmium. Archives of Toxicology 63, 320324.Google Scholar
Okuda, A., Kanehisa, J. & Heersche, J. N. (1990). The effects of sodium fluoride on the resorptive activity of isolated osteoclasts. Journal of Bone and Mineral Research 5 (Suppl. 1), S115S120.Google Scholar
Peace, H. & Beattie, J. H. (1991). No effect of boron on bone mineral excretion and plasma sex steroid levels in healthy postmenopausal women. In Trace Elements in Man and Animals 7, pp. 8-1 to 8-2 [Momcilovic, B., editor]. Zagreb: IMI.Google Scholar
Phelps, K. R., Vigorita, V. J., Bansal, M. & Einhorn, T. A. (1988). Histochemical demonstration of iron but not aluminum in a case of dialysis-associated osteomalacia. American Journal of Medicine 84, 775780.Google Scholar
Pond, W. G., Krook, L. P. & Klevay, L. M. (1990). Bone pathology without cardiovascular lesions in pigs fed high zinc and low copper diet. Nutrition Research 10, 871885.Google Scholar
Posner, A. S. (1967). Relationship between diet and bone mineral ultrastructure. Federation Proceedings 26, 17171722.Google Scholar
Pounds, J. G., Long, G. J. & Rosen, J. F. (1991). Cellular and molecular toxicity of lead in bone. Environmental Health Perspectives 91, 1732.Google Scholar
Prockop, D. J. (1971). Role of iron in the synthesis of collagen in connective tissue. Federation Proceedings 30, 984990.Google Scholar
Reginster, J. Y., Strause, L. G., Saltman, P. & Franchimont, P. (1988). Trace elements and postmenopausal osteoporosis: a preliminary study of decreased serum manganese. Medical Science Research 16, 337338.Google Scholar
Repo, M. A., Bockman, R. S., Betts, F., Boskey, A. L., Alcock, N. W. & Warrell, R. P. (1988). Effect of gallium on bone mineral properties. Calcified Tissue International 43, 300306.Google Scholar
Riggs, B. L., Hodgson, S. F., O'Fallon, W. M., Chao, E. Y. S., Wahner, H. W., Muhs, J. M., Cedel, S. L. & Melton, L. J. (1990). Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. New England Journal of Medicine 322, 802809.Google Scholar
Riggs, B. L. & Melton, L. J. [editors] (1988). Osteoporosis: Etiology, Diagnosis and Management. New York: Raven Press.Google Scholar
Robins, S. P., Milne, G. & Stewart, P. (1985). The effects of copper deficiency on the lysine-derived, pyridinium crosslinks of rat bone collagen. In Trace Elements in Man and Animals 5, pp. 4245 [Mills, C. F., Bremner, I. and Chesters, J. K., editors]. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Rodriguez, M., Felsenfeld, A. J. & Llach, F. (1990). Aluminum administration in the rat separately affects the osteoblast and bone mineralization. Journal of Bone and Mineral Research 5, 5967.Google Scholar
Ronaghy, H. A., Reinhold, J. G., Mahloudji, M., Ghavami, P., Spivey Fox, M. R. & Halstead, J. A. (1974). Zinc supplementation of malnourished schoolboys in Iran: increased growth and other effects. American Journal of Clinical Nutrition 27, 112121.Google Scholar
Rosen, J. F., Chesney, R. W., Hamstra, A., DeLuca, H. F. & Mahaffey, K. R. (1980). Reduction in 1,25-dihydroxyvitamin D in children with increased lead absorption. New England Journal of Medicine 302, 11281131.Google Scholar
Rucker, R. B. (1988). Trace elements in calcified tissues and matrix biology. In Trace Elements in Man and Animals 6, pp. 259260 [Hurley, L. S., Keen, C. L., Lönnerdal, B. and Rucker, R. B., editors]. New York: Plenum Press.Google Scholar
Rucker, R. B. & Murray, J. (1978). Cross-linking amino acids in collagen and elastin. American Journal of Clinical Nutrition 31, 12211236.Google Scholar
Rucker, R. B., Riggins, R. S., Laughlin, R., Chan, M. M., Chan, M. & Tom, K. (1975). Effects of nutritional copper deficiency on the biomechanical properties of bone and arterial elastin metabolism in the chick. Journal of Nutrition 105, 10621070.Google Scholar
Saltman, P. & Strause, L. (1991). Trace elements in bone metabolism. Journal of Inorganic Biochemistry 43, 284 (Abstract).Google Scholar
Saltzman, B. E., Gross, S. B., Yeager, D. W., Meiners, B. G. & Gartside, P. S. (1990). Total body burdens and tissue concentrations of lead, cadmium, copper, zinc, and ash in 55 human cadavers. Environmental Research 52, 126145.Google Scholar
Sandström, B. & Lönnerdal, B. (1989). Promoters and antagonists of zinc absorption. In Zinc in Human Biology, pp. 5778 [Mills, C. F., editor]. Berlin: Springer-Verlag.Google Scholar
Sauer, G. R. & Wuthier, R. E. (1990). Distribution of zinc in the avian growth plate. Journal of Bone and Mineral Research 5 (Suppl. 2), S162.Google Scholar
Sauk, J. J. & Somerman, M. J. (1991). Physiology of bone: mineral compartment proteins as candidates for environmental perturbation by lead. Environmental Health Perspectives 91, 916.Google Scholar
Schanne, F. A., Dowd, T. L., Gupta, R. K. & Rosen, J. F. (1989). Lead increases free Ca2+ concentration in cultured osteoblastic bone cells: simultaneous detection of intracellular free Pb2+ by 19F NMR. Proceedings of the National Academy of Sciences of the USA 86, 51335135.Google Scholar
Schanne, F. A., Dowd, T. L., Gupta, R. K. & Rosen, J. F. (1990). Effect of lead on parathyroid hormone-induced responses in rat osteoblastic osteosarcoma cells (ROS 17/2.8) using 19F-NMR. Biochimica et Biophysica Acta 1054, 250255.Google Scholar
Schwartz, J., Angle, C. & Pitcher, H. (1986). Relationship between childhood blood lead levels and stature. Pediatrics 77, 281288.Google Scholar
Seymour, C. A. (1987). Copper toxicity in man. In Copper in Animals and Man, pp. 79106 [McC. Howell, J. and Gawthorne, J. M., editors]. Boca Raton, FL: CRC Press.Google Scholar
Sherman, S. S., Smith, J. C., Tobin, J. D. & Soares, J. H. (1989). Ovariectomy, dietary zinc, and bone metabolism in retired breeder rats. American Journal of Clinical Nutrition 49, 11841191.Google Scholar
Shields, J. B. & Mitchell, H. H. (1941). The effect of calcium and phosphorus on the metabolism of lead. Journal of Nutrition 21, 541552.Google Scholar
Shuler, T. R. & Nielsen, F. H. (1988). Boron and methionine status of the rat affects the plasma and bone mineral response to high dietary aluminum. In Trace Elements in Man and Animals 6, pp. 581582 [Hurley, L. S., Keen, C. L., Lönnerdal, B. and Rucker, R. B., editors]. New York: Plenum Press.Google Scholar
Siegel, R. C., Page, R. C. & Martin, G. R. (1970). The relative activity of connective tissue lysyl oxidase and plasma amine oxidase on collagen and elastin substrates. Biochimica et Biophysica Acta 222, 552555.Google Scholar
Silbergeld, E. K. (1991). Lead in bone: implications for toxicology during pregnancy and lactation. Environmental Health Perspectives 91, 6370.Google Scholar
Silbergeld, E. K., Schwartz, J. & Mahaffey, K. (1988). Lead and osteoporosis: mobilization of lead from bone in postmenopausal women. Environmental Research 47, 7994.Google Scholar
Smith, C. M., DeLuca, H. F., Tanaka, Y. & Mahaffey, K. R. (1978). Stimulation of lead absorption by vitamin D administration. Journal of Nutrition 108, 843847.Google Scholar
Smith, C. M., DeLuca, H. F., Tanaka, Y. & Mahaffey, K. R. (1981). Effect of lead ingestion on functions of vitamin D and its metabolites. Journal of Nutrition 111, 13211329.Google Scholar
Sowers, M. F., Clark, M. K., Jannausch, M. L. & Wallace, R. B. (1991). A prospective study of bone mineral content and fracture in communities with differential fluoride exposure. American Journal of Epidemiology 133, 649660.Google Scholar
Spence, J. A., Suttle, N. F., Wenham, G., El-Gallad, T. & Bremner, I. (1980). A sequential study of the skeletal abnormalities which develop in rats given a small dietary supplement of ammonium tetrathiomolybdate. Journal of Comparative Pathology 90, 139153.Google Scholar
Stamp, T. C., Saphier, P. W., Loveridge, N., Kelsey, C. R., Goldstein, A. J., Katakity, M., Jenkins, M. V. & Rose, G. A. (1990). Fluoride therapy and parathyroid hormone activity in osteoporosis. Clinical Science 79, 233238.Google Scholar
Starcher, B. C., Hill, C. H. & Madras, J. G. (1980). Effect of zinc deficiency on bone collagenase and collagen turnover. Journal of Nutrition 110, 20952102.Google Scholar
Strause, L., Saltman, P. & Glowacki, J. (1987). The effect of deficiencies of manganese and copper on osteoinduction and on resorption of bone particles in rats. Calcified Tissue International 41, 145150.Google Scholar
Suzuki, Y., Morita, I., Yamane, Y. & Murota, S. (1989 a). Cadmium stimulates prostaglandin E2 production and bone resorption in cultured fetal mouse calvaria. Biochemical and Biophysical Research Communications 158, 508513.Google Scholar
Suzuki, Y., Morita, I., Yamane, Y. & Murota, S. (1989 b). Preventive effects of zinc on cadmium-induced inhibition of alkaline phosphatase activity and mineralization activity in osteoblast-like cells, MC3T3-E1. Journal of Pharmacobiodynamics 12, 9499.Google Scholar
Suzuki, Y., Morita, I., Yamane, Y. & Murota, S. (1990). Preventive effect of zinc against cadmium-induced bone resorption. Toxicology 62, 2734.Google Scholar
Swann, J. C., Reynolds, J. J. & Galloway, W. A. (1981). Zinc metalloenzyme properties of active and latent collagenase from rabbit bone. Biochemical Journal 195, 4149.Google Scholar
Tinker, D., Romero, N. & Rucker, R. (1988). The role of copper and cross-linking in elastin accumulation. In Trace Elements in Man and Animals 6, pp. 277278 [Hurley, L. S., Keen, C. L., Lönnerdal, B. and Rucker, R. B., editors]. New York: Plenum Press.Google Scholar
Underwood, E. & Mertz, W. (1987). Introduction. In Trace Elements in Human and Animal Nutrition, Vol. 1, pp. 120 [Mertz, W., editor]. San Diego, CA: Academic Press.Google Scholar
Vico, P. & Dessy, H. (1988). [A case of lead poisoning in a rachitic child with pica. Critical review of the literature.]. Revue Médicale de Bruxelles 9, 393397.Google Scholar
Vistica, D. T., Ahrens, F. A. & Ellison, W. R. (1977). The effects of lead upon collagen synthesis and proline hydroxylation in the Swiss mouse 3T6 fibroblast. Archives of Biochemistry and Biophysics 179, 1523.Google Scholar
Warrell, R. P., Bockman, R. S., Coonley, C. J., Isaacs, M. & Staszewski, H. (1984). Gallium nitrate inhibits calcium resorption from bone and is effective treatment for cancer-related hypercalcemia. Journal of Clinical Investigation 73, 14871490.Google Scholar
Warrell, R. P., Coonley, C. J., Straus, D. J. & Young, C. W. (1983). Treatment of patients with advanced malignant lymphoma using gallium nitrate administered as a seven-day continuous infusion. Cancer 51, 19821987.Google Scholar
Webb, M. (1979). Interactions of cadmium with cellular components. In The Chemistry, Biochemistry and Biology of Cadmium (Topics in Environmental Health, Vol. 2), pp. 285340 [Webb, M., editor]. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
Wiers, B. H., Francis, M. D., Hovancik, K., Ritchie, C. K. & Baylink, D. J. (1990). Theoretical physical chemical studies of the cause of fluoride-induced osteomalacia. Journal of Bone and Mineral Research 5 (Suppl. 1), S63S70.Google Scholar
Wolinsky, I., Simkin, A. & Guggenheim, K. (1972). Effects of fluoride on metabolism and mechanical properties of rat bone. American Journal of Physiology 223, 4650.Google Scholar
Yamaguchi, M. & Uchiyama, M. (1987). Preventive effect of zinc for toxic actions of germanium and selenium on bone metabolism in weanling rats. Research in Experimental Medicine 187, 395400.Google Scholar
Yamaguchi, M., Oishi, H. & Suketa, Y. (1987). Stimulatory effect of zinc on bone formation in tissue culture. Biochemical Pharmacology 36, 40074012.Google Scholar
Yamaguchi, M., Oishi, H. & Suketa, Y. (1989). Effect of vanadium on bone metabolism in weanling rats: zinc prevents the toxic effect of vanadium. Research in Experimental Medicine 189, 4753.Google Scholar
Yamaguchi, M. & Matsui, R. (1989). Effect of dipicinolate, a chelator of zinc, on bone protein synthesis in tissue culture. The essential role of zinc. Biochemical Pharmacology 38, 44854489.Google Scholar
Yamaguchi, M. & Oishi, H. (1989). Effect of 1,25-dihydroxyvitamin D3 on bone metabolism in tissue culture. Enhancement of the steroid effect by zinc. Biochemical Pharmacology 38, 34533459.Google Scholar
Yamaguchi, M. & Ozaki, K. (1990 a). Beta-alanyl-histidinato zinc prevents the toxic effect of aluminium on bone metabolism in weanling rats. Pharmacology 41, 338344.Google Scholar
Yamaguchi, M. & Ozaki, K. (1990 b). Effect of the new zinc compound beta-alanyl-L-histidinato zinc on bone metabolism in elderly rats. Pharmacology 41, 345349.Google Scholar
Yamaguchi, M. & Ozaki, K. (1990 c). A new zinc compound, beta-alanyl-L-histidinato zinc, stimulates bone growth in weanling rats. Research in Experimental Medicine 190, 105110.Google Scholar
Yamaguchi, M., Ozaki, K. & Hoshi, T. (1990). Beta-alanyl-L-histidinato zinc prevents skeletal unloading-induced disorder of bone metabolism in rats. Research in Experimental Medicine 190, 289294.Google Scholar
Yamaguchi, M. & Miwa, H. (1991). Stimulatory effect of beta-alanyl-L-histidinato zinc on bone formation in tissue culture. Pharmacology 42, 230240.Google Scholar
Yoshiki, S., Yanagisawa, T., Kimura, M., Otaki, N., Suzuki, M. & Suda, T. (1975). Bone and kidney lesions in experimental cadmium intoxication. Archives of Environmental Health 30, 559562.Google Scholar