Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T00:34:28.791Z Has data issue: false hasContentIssue false

The Relationship Between Diet, Nutrition and Dental Health: an Overview and Update for the 90s

Published online by Cambridge University Press:  14 December 2007

Paula J. Moynihan
Affiliation:
The Dental School, University of Newcastle, Framlington Place, Newcastle upon Tyne NE2 4BW
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1995

References

1Afonsky, D. (1951). Some observations on dental caries in central China. Journal of Dental Research 30, 5361.CrossRefGoogle ScholarPubMed
2Akpata, E. S. (1979). Patterns of dental caries in urban Nigerians. Caries Research 13, 241249.Google Scholar
3Albrecht, M., Bánóczy, J. & Tamas, G. (1988). Dental and oral symptoms of diabetes mellitus. Community Dentistry and Oral Epidemiology 16, 378380.CrossRefGoogle ScholarPubMed
4Altman, L. C., Baker, C., Fleckman, P., Luchtel, D. & Oda, D. (1992). Neutrophil-mediated damage to human gingival epithelial cells. Journal of Periodontal Research 27, 7079.CrossRefGoogle ScholarPubMed
5Alvarez, J. O., Caceda, J. & Aguayo, H. (1995). Early childhood caries and nutritional status. Journal of Dental Research 74, 468 (abstract).Google Scholar
6Alvarez, J. O., Eguren, J. C., Caceda, J. & Navia, J. M. (1990). The effect of nutritional status on the age distribution of dental caries in the primary teeth. Journal of Dental Research 69, 15641566.Google Scholar
7Alvarez, J. O. & Navia, J. M. (1989). Nutritional status, tooth eruption, and dental caries: a review. American Journal of Clinical Nutrition 49, 417426.CrossRefGoogle ScholarPubMed
8Anaise, J. Z. (1978). Prevalence of dental caries amongst workers in the sweets industry in Israel. Community Dentistry and Oral Epidemiology 6, 286289.Google Scholar
9Aponte-Merced, L. & Navia, J. M. (1980). Pre-eruptive protein-energy malnutrition and acid solubility of rat molar enamel surfaces. Archives of Oral Biology 25, 701705.Google Scholar
10Araujo, D. R., Velasco, L. F., Del Bel Cury, A. A., Maltz, M., Aranjo, F. B. & Cury, J. A. (1995). An in situ evaluation of cariogenic potential of human breast milk. Journal of Dental Research 74, 48 (abstr. no. 294).Google Scholar
11Asher, C. & Reed, M. J. F. (1987). Early enamel erosion in children associated with the excessive consumption of citric acid. British Dental Journal 162, 384387.CrossRefGoogle ScholarPubMed
12Ashley, F. P., Naylor, M. N. & Emslie, R. D. (1974). Clinical testing of dicalcium phosphate supplemented sweets. British Dental Journal 136, 361366; 418423.Google Scholar
13Åsman, B., Wijkander, P. & Hjerpe, A. (1994). Reduction of collagen degradation in experimental granulation tissue by vitamin E and selenium. Journal of Clinical Periodontology 21, 4547.CrossRefGoogle ScholarPubMed
14Aurer-Kozelj, J., Kralj-Klobučar, N., Buzina, R. & Bačić, M. (1982). The effect of ascorbic acid supplementation on periodontal tissue ultrastructure in subjects with progressive periodontitis. International Journal of Vitamin and Nutrition Research 52, 333341.Google Scholar
15Averill, H. M., Freire, P. S. & Bibby, B. G. (1966). The effect of dietary phosphate supplements on dental caries incidence in tropical Brazil. Archives of Oral Biology 11, 315322.Google Scholar
16Bánóczy, J., Zimmermann, P., Hadas, É., Pinter, A. & Bruszt, V. (1985). Effect of fluoridated milk on caries: five year results. Journal of the Royal Society of Health 105, 99103.Google Scholar
17Bánóczy, J., Zimmermann, P., Pinter, A., Hadas, É. & Bruszt, V. (1983). Effect of fluoridated milk on caries: three year results. Community Dentistry and Oral Epidemiology 11, 8185.Google Scholar
18Bär, A. (1988). Caries prevention with xylitol: a review of the scientific evidence. In Sociological and Medical Aspects of Nutrition (World Review of Nutrition and Dietetics 55), pp. 183209 [ G. H., Bourne, editor]. Basel: Karger.Google Scholar
19Barron, E. G. & Lewis, J. F. (1968). Effect of a school's naturally fluoridated water on the prevalence of carious lesions. Journal of Public Health Dentistry 28, 167172.Google Scholar
20Baume, L. J. (1969). Caries prevalence and caries intensity among 12,344 schoolchildren of French Polynesia. Archives of Oral Biology 14, 181205.CrossRefGoogle Scholar
21Bavetta, L. A. & McClure, F. J. (1957). Protein factors and experimental rat caries. Journal of Nutrition 63, 107117.CrossRefGoogle ScholarPubMed
22Beck, D. J. & Bibby, B. G. (1961). Acid production during the fermentation of starches by saliva. Journal of Dental Research 40, 486491.Google Scholar
23Becks, H., Wainwright, W. W. & Morgan, A. F. (1943). Comparative study of oral changes in dogs due to deficiencies of pantothenic acid, nicotinic acid and unknowns of the B vitamin complex. American Journal of Orthodontics & Oral Surgery 29, 183207.CrossRefGoogle Scholar
24Beighton, D. & Hayday, H. (1984). The establishment of the bacterium Streptococcus mutans in dental plaque and the induction of caries in macaque monkeys (Macaca fascicularis) fed a diet containing cooked wheat flour. Archives of Oral Biology 29, 369372.CrossRefGoogle ScholarPubMed
25Bergman, B. & Carlsson, G. E. (1972). Review of 54 complete denture wearers: patients' opinions one year after treatment. Acta Odontologica Scandinavica 30, 399414.CrossRefGoogle Scholar
26Bernick, S. M., Cohen, D. W., Baker, L. & Laster, L. (1975). Dental disease in children with diabetes mellitus. Journal of Periodontology 46, 241245.CrossRefGoogle ScholarPubMed
27Bibby, B. G., Goldberg, H. J. V. & Chen, E. (1951). Evaluation of caries-producing potentialities of various foods. Journal of the American Dental Association 42, 491509.Google Scholar
28Bibby, B. G. & Krobicka, A. (1984). An in vitro method for making repeated pH measurements on human dental plaque. Journal of Dental Research 63, 906909.Google Scholar
29Bibby, B. G., Mundorff, S. A. & Huang, C. T. (1983). Enamel demineralization tests with some standard foods and candies. Journal of Dental Research 62, 885888.CrossRefGoogle ScholarPubMed
30Bibby, B. G., Mundorff, S. A., Zero, D. T. & Almekinder, K. J. (1986). Oral food clearance and the pH of plaque and saliva. Journal of the American Dental Association 112, 333337.Google Scholar
31Bowen, W. H. (1972). The cariostatic effect of calcium glycerophosphate in monkeys. Caries Research 6, 4351.CrossRefGoogle ScholarPubMed
32Bowen, W. H., Amsbaugh, S. M., Monnell-Torrens, S., Brunelle, J., Kuzmiak-Jones, H. & Cole, M. F. (1980). A method to assess cariogenic potential of foodstuffs. Journal of the American Dental Association 100, 677681.Google Scholar
33Bowen, W. H., Pearson, S. K., van Wuyckhuyse, B. C. & Tabak, L. A. (1991). Influence of milk, lactose-reduced milk, and lactose on caries in desalivated rats. Caries Research 25, 283286.CrossRefGoogle ScholarPubMed
34Bradford, E. W. & Crabb, H. S. M. (1961). Carbohydrate restriction and caries incidence: a pilot study. British Dental Journal 111, 273279.Google Scholar
35Bradford, E. W. & Crabb, H. S. M. (1963). Carbohydrates and the incidence of caries in the deciduous dentition. In Advances in Fluorine Research and Dental Caries Prevention (1962 Congress), vol. 1, pp. 319323 [ J. L., Hardwick, J.-L., Dustin and H. R., Held, editors]. Oxford: Pergamon Press.Google Scholar
36Brodeur, J. M. & Laurin, D. (1993). Nutrient intake and gastrointestinal disorders related to masticatory perform´nce in the edentulous elderly. Journal of Prosthetic Dentistry 70, 468473.Google Scholar
37Brudevold, F., Attarzadeh, F., Tehrani, A., van Houte, J. & Russo, J. (1984). Development of a new intraoral demineralization test. Caries Research 18, 421429.Google Scholar
38Brudevold, F., Goulet, D., Tehrani, A., Attarzadeh, F. & van Houte, J. (1985). Intraoral demineralization and maltose clearance from wheat starch. Caries Research 19, 136144.Google Scholar
39Brudevold, F., Kashket, S. & Kent, R. L. (1990). The effect of sucrose and fat in cookies on salivation and oral retention in humans. Journal of Dental Research 69, 12781282.Google Scholar
40Burrill, D. Y. (1942). Relationship of blood plasma vitamin C level to gingival and periodontal disease. Journal of Dental Research 21, 353363.Google Scholar
41Burt, B. A., Eklund, S. A., Morgan, K. J., Larkin, F. E., Guire, K. E., Brown, L. O. & Weintraub, J. A. (1988). The effects of sugars intake and frequency of ingestion on dental caries increment in a three-year longitudinal study. Journal of Dental Research 67, 14221429.Google Scholar
42Caldwell, R. C. (1970). Physical properties of foods and their caries producing potential. Journal of Dental Research 49, 12931298.Google Scholar
43Carlsson, J. & Egelberg, J. (1965). Effect of diet on early plaque formation in man. Odontologisk Revy 16, 112125.Google Scholar
44Cerna, H., Fiala, B., Fingerova, H., Pohanka, E. & Szwarcon, A. (1984). Contribution to indication of total therapy with vitamin E in chronic periodontal disease (pilot study). Acta Universitatis Palackianae Olomucensis Facultatis Medicae 107, 167170.Google Scholar
45Cohen, M. M. (1955). The effect of large doses of ascorbic acid on gingival tissues at puberty. Journal of Dental Research 34, 750751.Google Scholar
46Colman, G., Bowen, W. H. & Cole, M. F. (1977). Effects of sucrose, fructose and a mixture of glucose and fructose on the incidence of dental caries in monkeys (Macaca fascicularis). British Dental Journal 142, 217223.CrossRefGoogle Scholar
47Commerford, J. D. (1974). Corn sweetener industry. In Sweeteners (symposium) [ I. E., Inglett, editor]. Westport, CT: AVI.Google Scholar
48Cowan, A. (1976). The influence of vitamin C on the periodontal membrane space – a radiographic study. Irish Journal of Medical Science 145, 273284.CrossRefGoogle ScholarPubMed
49Dachi, S. F., Saxe, S. R. & Bohannan, H. M. (1966). The failure of short-term vitamin supplementation to reduce sulcus depth. Journal of Periodontology 37, 221223.Google Scholar
50Darby, E. T. (1892). Dental erosion and gouty diathesis, are they related? Dental Cosmos 34, 629640.Google Scholar
51Dean, H. T. (1936). Chronic endemic dental fluorosis (mottled enamel). Journal of the American Medical Association 107, 12691272.Google Scholar
52Dean, H. T., Arnold, F. A. & Elvove, E. (1942). Domestic water and dental caries. 5. Additional studies of the relation of fluoride domestic waters to dental caries prevalence in 4425 white children, age 12-14 years, of 13 cities of 4 states. Public Health Reports 57, 11551179.Google Scholar
53de Crousaz, P., Marthaler, T., Weisner, V., Bandi, A., Steiner, M., Roberts, A. & Meyer, R. (1985). Caries prevalence in children after 12 years of salt fluoridation in a Canton of Switzerland. Schweizerische Monatsschrift für Zahnmedizin 95, 805815.Google Scholar
54Department of Health (1991). Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Report on Health and Social Subjects no. 41. London: HMSO.Google Scholar
55Department of Health (1994 a). An Oral Health Strategy for England. London: HMSO.Google Scholar
56Department of Health (1994 b). Weaning and the Weaning Diet. Report on Health and Social Subjects no. 45. London: HMSO.Google Scholar
57Department of Health (1994 c). Nutritional Aspects of Cardiovascular Disease. Report on Health and Social Subjects no. 46. London: HMSO.Google Scholar
58Driesen, S. & Spies, T. D. (1952). The incidence of dental caries in habitual sugar cane chewers. Journal of the American Dental Association 45, 193200.Google Scholar
59Drummer, P. M. H., Oliver, S. J., Hicks, R., Kingdon, A., Kingdon, R., Addy, M. & Shaw, W. C. (1990). Factors influencing the caries experience of a group of children at the ages of 11-12 and 15-16 years; results of an ongoing epidemiological survey. Journal of Dentistry 18, 3748.Google Scholar
60Duff, E. J. (1981). Total and ionic fluoride in milk. Caries Research 15, 406408.Google Scholar
61Edgar, W. M. (1985). Prediction of the cariogenicity of various foods. International Dental Journal 35, 190194.Google ScholarPubMed
62Edgar, W. M., Bibby, B. G., Mundorff, S. & Rowley, J. (1975). Acid production in plaques after eating snacks: modifying factors in foods. Journal of the American Dental Association 90, 418425.Google Scholar
63Edgar, W. M. & Geddes, D. A. M. (1990). Chewing gum and dental health: a review. British Dental Journal 168, 173177.CrossRefGoogle ScholarPubMed
64Enwonwu, C. O. (1973). Influence of socio-economic conditions on dental development in Nigerian children. Archives of Oral Biology 18, 95107.Google Scholar
65Farrell, J. H. (1956). The effect of mastication on the digestion of food. British Dental Journal 100, 149155.Google Scholar
66Finn, S. B., Frew, R. A., Leibowitz, R., Morse, W., Manson-Hing, L. & Brunelle, J. (1978). The effect of sodium trimetaphosphate (TMP) as a chewing gum additive on caries increments in children. Journal of the American Dental Association 96, 651655.Google Scholar
67Firestone, A. R., Schmid, R. & Mühlemann, H. R. (1982). Cariogenic effects of cooked wheat starch alone or with sucrose and frequency-controlled feedings in rats. Archives of Oral Biology 27, 759763.CrossRefGoogle ScholarPubMed
68Firestone, A. R., Schmid, R. & Mühlemann, H. R. (1984). Effect of the length and number of intervals between meals on caries in rats. Caries Research 18, 128133.Google Scholar
69Fisher, F. J. (1968). A field survey of dental caries, periodontal disease and enamel defects in Tristan da Cunha. 2. Methods and results. British Dental Journal 125, 447453.Google Scholar
70Fosdick, L. S., Campaigne, E. E. & Fancher, O. E. (1941). Rate of acid formation in carious areas: the etiology of dental caries. Illinois Dental Journal 10, 8595.Google Scholar
71Frencken, J. E., Rugarabaum, P. & Mulder, J. (1989). The effect of sugar cane chewing on the development of dental caries. Journal of Dental Research 68, 11021104.Google Scholar
72Frostell, G. (1972). Effect of cooked starch solution on the pH of dental plaque. Swedish Dental Journal 65, 161165.Google Scholar
73Frostell, G. (1973). Effects of mouth rinses with sucrose, glucose, fructose, lactose, sorbitol and Lycasin on the pH of dental plaque. Odontologisk Revy 24, 217226.Google Scholar
74Fry, A. J. & Grenby, T. H. (1972). The effects of reduced sucrose intake on the formation and composition of dental plaque in a group of men in the Antarctic. Archives of Oral Biology 17, 873882.Google Scholar
75Fuller, J. L. & Johnson, W. W. (1977). Citric acid consumption and the human dentition. Journal of the American Dental Association 95, 8084.Google Scholar
76Gaengler, P., Pfister, W., Sproessig, M. & Mirgorod, M. (1986). The effects of carbohydrate-reduced diet on development of gingivitis. Clinical Preventive Dentistry 8, 1723.Google Scholar
77Gedalia, I., Galon, H., Rennert, A., Biderco, I. & Mohr, I. (1981). Effect of fluoridated citrus beverages on dental caries and on fluoride concentration in the surface enamel of children's teeth. Caries Research 15, 103–y108.Google Scholar
78Geissler, C. A. & Bates, J. F. (1984). The nutritional effects of tooth loss. American Journal of Clinical Nutrition 39, 478489.Google ScholarPubMed
79Giunta, J. L. (1983). Dental erosion resulting from chewable vitamin C tablets. Journal of the American Dental Association 107, 253256.Google Scholar
80Glass, R. L. (1982). The first international conference on the declining prevalence of dental caries. Introduction. Journal of Dental Research 61, 13011304.Google Scholar
81Glass, R. L. & Hayden, J. (1966). Dental caries in Seventh Day Adventist children. Journal of Dentistry for Children 33, 2223.Google Scholar
82Glickmann, I. (1979). Nutritional influences on the periodontum. In Glickman's Clinical Periodontology, 5th edn, pp. 489505 [ F. A, Carranza, editor]. Philadelphia, PA: Saunders.Google Scholar
83Goodson, J. M. & Bowles, D. (1973). The effect of α-tocopherol on sulcus fluid flow in periodontal disease. Journal of Dental Research 52, 217 (Abstr.).Google Scholar
84Graf, H. (1970). The glycolytic activity of plaque and its relation to hard tissues pathology; recent findings from intraoral pH telemetry research. International Dental Journal 20, 426435.Google ScholarPubMed
85Granath, L.-E., Rootzen, H., Liljegren, E., Holst, K. & Köhler, L. (1978). Variation in caries prevalence related to combinations of dietary and oral hygiene habits and chewing fluoride tablets in 4-year-old children. Caries Research 12, 8392.Google Scholar
86Green, R. M. & Hartles, R. L. (1967). The effect of uncooked and roll-dried maize starch, alone and mixed in equal quantity with sucrose, on dental caries in the albino rat. British Journal of Nutrition 21, 225230.Google Scholar
87Green, R. M. & Hartles, R. L. (1970). The effects of diets containing varying percentages of sucrose and maize starch on caries in the albino rat. Caries Research 4, 188192.Google Scholar
88Grenby, T. H. (1965). The influence of cooked and raw wheat starch on dental caries in the rat. Archives of Oral Biology 10, 433438.Google Scholar
89Grenby, T. H. (1967). Investigation in experimental animals on the cariogenicity of diets containing sucrose and/or starch. Caries Research 1, 208221.Google Scholar
90Grenby, T. H. (1971). Dental plaque studies on baboons fed on diets containing different carbohydrates. Archives of Oral Biology 16, 631638.CrossRefGoogle ScholarPubMed
91Grenby, T. H. (1972). The effect of glucose syrup on dental caries in the rat. Caries Research 6, 5259.Google Scholar
92Grenby, T. H. (1973). Trials of three organic phosphorus-containing compounds as protective agents against dental caries in rats. Journal of Dental Research 52, 454461.Google Scholar
93Grenby, T. H. (1990). Snack foods and dental caries. Investigations using laboratory animals. British Dental Journal 168, 353361.Google Scholar
94Grenby, T. H. (1991). Update on low-calorie sweeteners to benefit dental health. International Dental Journal 41, 217224.Google Scholar
95Grenby, T. H. & Bull, J. M. (1975). Protection against dental caries in rats by glycerophosphates or calcium salts or mixtures of both. Archives of Oral Biology 20, 717724.Google Scholar
96Grenby, T. H. & Leer, C. J. (1974). Reduction in ‘smooth surface’ caries and fat accumulation in rats when sucrose in drinking water is replaced by glucose syrup. Caries Research 8, 368372.Google Scholar
97Grenby, T. H. & Paterson, F. M. (1972). Effect of sweet biscuits on the incidence of dental caries in rats. British Journal of Nutrition 27, 195199.Google Scholar
98Grenby, T. H. & Saldanha, M. G. (1986). Studies of the inhibitory action of intense sweeteners on oral microorganisms relating to dental health. Caries Research 20, 716.Google Scholar
99Guggenheim, B., König, K. G., Herzog, E. & Mühlemann, H. R. (1966). The cariogenicity of different dietary carbohydrates tested on rats in relative gnotobiosis with a Streptococcus producing extracellular polysaccharide. Helvetica Odontologica Acta 10, 101113.Google Scholar
100Guggenheimer, J. & Schneider, L. G. (1980). Tooth erosion associated with excessive use of an artificially sweetened Cola beverage. Journal of Preventive Dentistry 6, 261262.Google Scholar
102Gustafsson, B. E., Quensel, C. E., Lanke, L. S., Lundqvist, C., Grahnén, H., Bonow, B. E. & Krasse, B. (1954). The Vipeholm dental caries study. The effect of different levels of carbohydrate intake on caries activity in 436 individuals observed for five years. Acta Odontologica Scandinavica 11, 232364.Google Scholar
103Hackett, A. F., Rugg-Gunn, A. J., Murray, J. J. & Roberts, G. J. (1984). Can breast feeding cause dental caries? Human Nutrition: Applied Nutrition 38A, 2328.Google Scholar
104Hankin, J. H., Chung, C. S. & Kau, M. C. W. (1973). Genetic and epidemiologic studies of oral characteristics in Hawaii's school-children: diet patterns and caries prevalence. Journal of Dental Research 52, 10791086.Google Scholar
105Haraldson, T. & Carlsson, G. E. (1979). Chewing efficiency in patients with osseointegrated oral implant bridges. Swedish Dental Journal 3, 183–91.Google Scholar
106Hargreaves, J. A. & Thompson, G. W. (1989). Ultra-violet light and dental caries in children. Caries Research 23, 389392.Google Scholar
107Harper, D. S., Gray, R., Lenke, J. W. & Hefferren, J. J. (1985). Measurement of human plaque acidity; comparison of interdental touch and indwelling electrodes. Caries Research 19, 536546.Google Scholar
108Harris, R. (1963). Biology of the children of Hopewood House, Bowral, Australia. 4. Observations on dental caries experience extending over 5 years (1957–61). Journal of Dental Research 42, 13871399.Google Scholar
109Hausen, H., Heinomen, O. P. & Paunio, I. (1981). Modification of occurrence of caries in children by toothbrushing and sugar exposure in fluoridated and non-fluoridated area. Community Dentistry and Oral Epidemiology 9, 103107.Google Scholar
110Heath, M. R. (1972). Dietary selection by elderly persons, related to dental state. British Dental Journal 132, 145148.Google Scholar
111Hefti, A. & Schmid, R. (1979). Effect on caries incidence in rats of increasing dietary sucrose levels. Caries Research 13, 298300.Google Scholar
112Heifetz, S. B., Horowitz, H. S. & Brunelle, J. A. (1983). Effect of school water fluoridation on dental caries: results in Seagrove, NC, after 12 years. Journal of the American Dental Association 106, 334337.Google Scholar
113Henrikson, P. A. (1968). Periodontal disease and calcium deficiency. An experimental study in the dog. Acta Odontologica Scandinavica 26, Suppl.50.Google Scholar
114Higham, S. M. & Edgar, W. M. (1989). Effects of Parafilm® and cheese chewing on human dental plaque pH and metabolism. Caries Research 23, 4248.Google Scholar
115Hodges, R. E., Hood, J., Canham, J. E., Sauberlich, H. E. & Baker, E. M. (1971). Clinical manifestations of ascorbic acid deficiency in man. American Journal of Clinical Nutrition 24, 432443.Google Scholar
116Holloway, P. J., Shaw, J. H. & Sweeney, E. A. (1961). Effects of carious sucrose: casein ratios in purified diets on the teeth and supporting structures of rats. Archives of Oral Biology 3, 185200.Google Scholar
117Holt, R. D., Joels, D., Bulman, J. & Maddick, I. H. (1988). A third study of caries in preschool aged children in Camden. British Dental Journal 165, 8791.Google Scholar
118Horowitz, H. S., Heifetz, S. B. & Law, F. E. (1972). Effect of school water fluoridation on dental caries; final results in Elk Lake, PA after 12 years. Journal of the American Dental Association 84, 832838.Google Scholar
119Horowitz, H. S., Heifetz, S. B., Law, F. E. & Driscoll, W. S. (1968). School fluoridation studies in Elk Lake, Pennsylvania, and Pike County, Kentucky – results after eight years. American Journal of Public Health 58, 22402250.Google Scholar
120Huang, C. T., Little, M. F. & Johnson, R. (1981). Influence of carbohydrates on in vitro lesion production. Caries Research 15, 5459.Google Scholar
121Huxley, H. G. (1971). The cariogenicity of various percentages of dietary sucrose and glucose in experimental animals. New Zealand Dental Journal 67, 8598.Google Scholar
122Huxley, H. G. (1977). The cariogenicity of dietary sucrose at various levels in two strains of rat under unrestricted and controlled frequency feeding conditions. Caries Research 11, 237242.Google Scholar
123Imfeld, T. (1977). Evaluation of the cariogenicity of confectionery by intraoral wire telemetry. Schweizerische Monatsschrift für Zahnheilkunde 87, 437464.Google Scholar
124Imfeld, T. N. (1983). Identification of Low Caries Risk Dietary Components, pp. 153155; 165174. Basel: Karger.Google Scholar
125Imfeld, T., Hirsch, R. S. & Mühlemann, H. R. (1978). Telemetric recordings of interdental plaque pH during different meal patterns. British Dental Journal 144, 4045.Google Scholar
126Infante, P. F. & Gillespie, G. M. (1977). Enamel hypoplasia in relation to caries in Guatemalan children. Journal of Dental Research 56, 493498.Google Scholar
127Jacobsen, J. (1979). Recent reorganisation of the public health service in Greenland in favour of caries prevention. Community Dentistry and Oral Epidemiology 7, 7581.Google Scholar
128Jalil, R. A., Cornick, D. E. R. & Waite, I. M. (1983). Effect of variation in dietary sucrose intake on plaque removal by mechanical means. Journal of Clinical Periodontology 10, 389398.Google Scholar
129Jarvinen, V. K., Rytomaa, I. I. & Heinonen, O. P. (1991). Risk factors in dental erosion. Journal of Dental Research 70, 942947.Google Scholar
130Jenkins, G. N. (1978). The Physiology and Biochemistry of the Mouth, 4th edn. Oxford: Blackwell.Google Scholar
131Jenkins, G. N. & Ferguson, D. B. (1966). Milk and dental caries. British Dental Journal 120, 472477.Google Scholar
132Jenkins, G. N. & Hargreaves, J. A. (1989). Effect of eating cheese on Ca and P concentrations of whole mouth saliva and plaque. Caries Research 23, 159164.Google Scholar
133Jenkins, G. N. & Smales, F. C. (1966). The potential importance in caries prevention of solubility-reducing and anti-bacterial factors in unrefined plant products. Archives of Oral Biology 11, 599608.Google Scholar
134Jensen, M. E., Hartander, S. K. & Schachtele, C. F. (1984). Evaluation of the acidogenic and antacid properties of cheeses by telemetric monitoring of human dental plaque pH. In Foods, Nutrition and Health, vol. 4, pp. 3148. Chicago, IL: American Dental Association.Google Scholar
135Jensen, M. E. & Welfel, J. S. (1990). Effects of processed cheese on human plaque pH and demineralization and remineralization. American Journal of Dentistry 3, 217323.Google Scholar
136Johansson, I., Lumikari, M. & Ericson, T. (1989). Effect of moderate vitamin A deficiency on saliva secretion rate and some salivary glycoproteins in adult rat. Scandinavian Journal of Dental Research 97, 263267.Google Scholar
137Katayama, T., Nagagawa, E., Honda, O., Tani, H., Okado, S. & Suzuki, S. (1979). Incidence and distribution of Strep. mutans in plaque from confectionery workers. Journal of Dental Research 58, (Special issue D) 2251 (Abstr. 11).Google Scholar
138King, J. D. (1940). Dental Disease in the Island of Lewis. MRC Special Report Series no. 241. London: HMSO.Google Scholar
139Kleemola-Kujala, E. & Rasanen, L. (1979). Dietary pattern of Finnish children with low and high caries experience. Community Dentistry and Oral Epidemiology 7, 199205.Google Scholar
140Kleemola-Kujala, E. & Rasanen, L. (1982). Relationship of oral hygiene and sugar consumption to risk of caries in children. Community Dentistry and Oral Epidemiology 10, 224233.Google Scholar
141König, K. G. (1966). Möglichkeiten der Kariesprophylaxe beim Menschen und ihre Untersuchung im Kurzfristigen Rattenexperiment. Bern: Hans Huber.Google Scholar
142König, K. G. (1993). The role of fluoride toothpastes in a caries preventive strategy. In Efficacy of Caries Preventive Strategies, pp. 2328. Caries Research 27, Supplement.Google Scholar
143König, K. G., Schmid, P. & Schmid, R. (1968). An apparatus for frequency-controlled feeding of small rodents and its use in dental caries experiments. Archives of Oral Biology 13, 1326.Google Scholar
144Koulourides, T., Bodden, R., Keller, S., Manson-Hing, L. L., Lastra, J. & Housch, T. (1976). Cariogenicity of nine sugars tested with an intraoral device in man. Caries Research 10, 427441.Google Scholar
145Kristofferson, K., Axelsson, P., Birkhed, D. & Bratthall, D. (1986). Caries prevalence, salivary Streptococcus mutans and dietary scores in 13-year-old Swedish schoolchildren. Community Dentistry and Oral Epidemiology 14, 202205.CrossRefGoogle Scholar
146Kunzel, W., Borroto, R. C., Lanier, S. & Soto, F. (1973). [Effect of habitual sugarcane chewing on the incidence of caries and periodontal disease in Cuban sugarcane workers.] Deutsche Stomatologie 23, 554561.Google Scholar
147Leggett, B. J., Garbee, W. H., Gardiner, J. F. & Lancaster, D. M. (1987). The effect of fluoridated chocolate milk on caries incidence in elementary schoolchildren; two and three year studies. Journal of Dentistry for Children 54, 1821.Google Scholar
148Levine, R. S. (1973). Fruit juice erosion – an increasing danger? Journal of Dentistry 2, 8588.Google Scholar
149Levine, R. S. (1991). Fluoride and caries prevention. 1. Scientific rationale. Dental Update (April) 105110.Google Scholar
150Lewis, K. J. & Smith, B. G. N. (1973). The relationship of erosion and attrition in excessive tooth tissue loss. British Dental Journal 135, 400404.Google Scholar
151Lilienthal, B. (1977). Phosphates and Dental Caries. Basel: Karger.Google ScholarPubMed
152Lilienthal, B., Bush, E., Buckmaster, M., Gregory, G., Gagolski, J., Smythe, B. M., Curtin, J. H. & Napper, D. H. (1966). The cariostatic effect of carbohydrate phosphates in the diet. Australian Dental Journal 11, 388395.Google Scholar
153Lindhe, J. (1989). Textbook of Clinical Periodontology, 2nd edn. Copenhagen: Munksgaard.Google Scholar
154Lindqvist, L. W. & Carlsson, G. E. (1985). Long-term effects of chewing with mandibular fixed prostheses on osseointegrated implants. Acta Odontologica Scandinavica 43, 3945.Google Scholar
155Ludwig, T. G. & Bibby, B. G. (1957). Acid production from different carbohydrate foods in plaque and saliva. Journal of Dental Research 36, 5660.Google Scholar
156McClure, F. J. & Ruzicka, S. J. (1946). The destructive effect of citrate vs. lactate ions on rats' molar tooth surfaces, in vivo. Journal of Dental Research 25, 112.Google Scholar
157MacDonald, S. P., Cowell, C. R. & Sheiham, A. (1981). Methods of preventing dental caries used by dentists for their own children. British Dental Journal 151, 118121.Google Scholar
158MacGregor, A. B. (1963). Increasing caries incidence and changing diet in Ghana. International Dental Journal 13, 516522.Google Scholar
159McKay, F. S. (1916). An investigation of mottled teeth (I). Dental Cosmos 58, 477484.Google Scholar
160Magrill, D. S. (1973). The reduction of the solubility of hydroxyapatite in acid by adsorption of phytate from solution. Archives of Oral Biology 18, 591600.Google Scholar
161Mäkila, E. (1968). Effects of complete dentures on the dietary habits and serum thiamine, riboflavin and ascorbic acid levels in edentulous persons. Suomen Hammaslääkäriseuran Toimituksia 64, 107152.Google Scholar
162Mäkila, E. (1969 a). Protein consumption and intake of essential amino acids, niacin and calcium before and after wearing complete dentures. Suomen Hammaslääkäriseuran Toimituksia 65, 125133.Google Scholar
163Mäkila, E. (1969 b). Effects of complete dentures on dietary intake and serum levels of pantothenic acid, folic acid and iron in edentulous persons. Suomen Hammaslääkäriseuran Toimituksia 65, 299311.Google Scholar
164Mansbridge, J. N. (1960). The effects of oral hygiene and sweet consumption on the prevalence of dental caries. British Dental Journal 109, 343348.Google Scholar
165Marshall-Day, C. D. (1944). Nutritional deficiencies and dental caries in Northern India. British Dental Journal 76, 115122; 143147.Google Scholar
166Marthaler, T. M. (1967). Epidemiological and clinical dental findings in relation to intake of carbohydrates. Caries Research 1, 222238.Google Scholar
167Marthaler, T. M. (1979). Sugar and oral health: epidemiology in humans. In Health and Sugar Substitutes pp. 2734 [ Guggenheim, B., editor]. Basel: Karger.Google Scholar
168Martinson, T. (1972). Socio-economic investigation of school-children with high and low caries frequency. III. A dietary study based on information given by the children. Odontologisk Revy 23, 93114.Google Scholar
169Mason, G. M., Chapple, I. L. C. & Matthews, J. B. (1995). Local and systemic antioxidant capacity in chronic adult periodontal disease. Journal of Dental Research (in press).Google Scholar
170Meehan, K., Touger-Decker, K. & Vogel, R. (1995). Effect of edentulism and dentures on diet and nutritional status. Journal of Dental Research 74, Suppl. 79 pp.Google Scholar
171Mellanby, M. (1918). An experimental study of the influence of diet on teeth formation. Lancet II, 767770.Google Scholar
172Mellanby, M. & Coumoulos, H. (1944). The improved dentition of 5-year-old London school-children. A comparison between 1943 and 1929. British Medical Journal i, 837840.Google Scholar
173Mellanby, M. & Pattison, C. L. (1928). The action of vitamin D in preventing the spread and promoting the arrest of caries in children. British Medical Journal ii, 10791082.Google Scholar
174Menaker, L. & Navia, J. M. (1973). Effect of under-nutrition during the perinatal period on caries development in the rat. II. Caries susceptibility in underfed rats supplemented with protein or caloric additions during the suckling period. Journal of Dental Research 52, 680687.Google Scholar
175Menghini, G. D., Steiner, M., Marthaler, T. & Bandi, A. (1995). [Incidence of caries in schoolchildren in the Glarus Canton in 1974-1992: effect of salt fluoridation.] Schweizerische Monatsschrift für Zahnmedizin 105, 467473.Google Scholar
176Meurman, J. H., Rytömaa, I., Kari, K., Laakso, T. & Murtomaa, H. (1987). Salivary pH and glucose after consuming various beverages, including sugar-containing drinks. Caries Research 21, 353359.Google Scholar
177Mikx, F. H. M., van der Hoeven, J. S., Plasschaert, A. J. M. & König, K. G. (1975). Effect of Actinomyces viscosius on the establishment and symbiosis of Streptococcus mutans and Streptococcus sanguis in SPF rats on different sucrose diets. Caries Research 9, 120.Google Scholar
178Miller, W. D. (1907). Experiments and observations on the wasting of tooth tissue variously designated as erosion, abrasion etc. Dental Cosmos 49, 225247.Google Scholar
179Millward, A., Shaw, L., Smith, A. J., Rippin, J. W. & Harrington, E. (1994). The distribution and severity of tooth wear and the relationship between erosion and dietary constituents in a group of children. International Journal of Paediatric Dentistry 4, 151157.Google Scholar
180Møller, I. J. (1965). Dental Fluorose og Caries. Copenhagen: Rhodes International Science Publishers.Google Scholar
181Mörch, T. (1961). The acid potentiality of carbohydrates; an investigation on some common dietary components in Norway. Acta Odontologica Scandinavica 19, 355385.Google Scholar
182Moynihan, P. J., Gould, M. E. L., Huntley, N. & Thorman, S. (1995 a). Effect of glucose polymers in water, milk and Calogen on plaque pH in vitro. International Journal of Paediatric Dentistry (in press).CrossRefGoogle Scholar
183Moynihan, P. J., Snow, S., Jepson, N. J. A. & Butler, T. J. (1994). Intake of non-starch polysaccharide (dietary fibre) in edentulous and dentate persons: an observational study. British Dental Journal 177, 243247.Google Scholar
184Moynihan, P. J., Walton, A. G. & Wright, W. G. (1995 b). A comparison of the relative acidogenic potential of standard infant milk formula and soya infant formula: a plaque pH study. International Journal of Paediatric Dentistry (in press).Google Scholar
185Murray, J. J., Rugg-Gunn, A. J. & Jenkins, G. N. (1991). Fluorides in Caries Prevention, 3rd edn. Oxford: Butterworth-Heinemann.Google Scholar
186Nerf, D. (1967). Acid production from different carbohydrate sources in human plaque in situ. Caries Research 1, 7887.Google Scholar
187Newbrun, E. (1984). Diet and dental caries. In Cariology Today, pp. 340352 [ B., Guggenheim, editor]. Basel: Karger.Google Scholar
188Newbrun, E. (1989). Cariology, 3rd edn. Chicago, IL: Quintessence.Google Scholar
189Newbrun, E. (1990). The potential role of alternative sweeteners in caries prevention. Israel Journal of Dental Science 2, 328345.Google Scholar
190Newbrun, E., Hoover, C., Mettraux, G. & Graf, H. (1980). Comparison of dietary habits and dental health of subjects with hereditary fructose intolerance and control subjects. Journal of the American Dental Association 101, 619626.Google Scholar
191Nikiforuk, G. & Fraser, D. (1981). The etiology of enamel hypoplasia – a unifying concept. Journal of Pediatrics 98, 888893.Google Scholar
192Nizel, A. E. & Harris, R. S. (1964). The effects of phosphates on experimental dental caries: a literature review. Journal of Dental Research 43, 11231136.Google Scholar
193O'Brien, M. (1994). Children's Dental Health in the United Kingdom 1993. Office of Population Censuses and Surveys, Social Survey Division. London: HMSO.Google Scholar
194Office of Population Censuses & Surveys (1995). National Diet and Nutrition Survey: Children Aged 1½ to 4½ Years, vol. 2: Report of the Dental Survey, pp. 35, 36. London: HMSO.Google Scholar
195Oliver, W. M. (1969). The effect of deficiencies of calcium, vitamin D or calcium and vitamin D and variations in the source of dietary protein on the supporting tissues of the rat molar. Journal of Periodontal Research 4, 5669.Google Scholar
196Olojugba, O. O. & Lennon, M. A. (1987). Dental caries experience in 5- and 12-year-old schoolchildren in Ondo State, Nigeria in 1977 and 1983. Community Dental Health 4, 129135.Google Scholar
197Olojugba, O. O. & Lennon, M. A. (1990). Sugar consumption in 5- and 12-year-old schoolchildren in Ondo State, Nigeria in 1985. Community Dental Health 7, 259265.Google Scholar
198Olsson, B. (1978). Dental caries and fluorosis in Arussi province, Ethiopia. Community Dentistry and Oral Epidemiology 6, 338343.Google Scholar
199Olsson, B. (1979). Dental health situation in privileged children in Addis Ababa, Ethiopia. Community Dentistry and Oral Epidemiology 7, 3741.Google Scholar
200O'Rourke, J. T. (1947). The relationship of the physical character of the diet to the health of the periodontal tissues. American Journal of Orthodontics and Oral Surgery 33, 687700.Google Scholar
201Osterberg, T. & Steen, B. (1982). Relationship between dental state and dietary intake in 70-year-old males and females in Goteberg, Sweden: a population study. Journal of Oral Rehabilitation 9, 509521.Google Scholar
202Pack, A. R. C. (1984). Folate mouthwash; effects on established gingivitis in periodontal patients. Journal of Clinical Periodontology 11, 619628.Google Scholar
203Pack, A. R. C. & Thompson, M. E. (1980). Effects of topical and systemic folic acid supplementation on gingivitis in pregnancy. Journal of Clinical Periodontology 7, 402414.Google Scholar
204Parfitt, G. J. & Hand, C. D. (1963). Reduced plasma ascorbic acid levels and gingival health. Journal of Periodontology 34, 347351.Google Scholar
205Pearce, E. I. F. & Bibby, B. G. (1966). Protein adsorption on bovine enamel. Archives of Oral Biology 11, 329336.Google Scholar
206Perlitsh, M. J., Neilsen, A. G. & Stanmyer, W. R. (1961). Ascorbic acid plasma levels and gingival health in personnel wintering over in Antarctica. Journal of Dental Research 40, 789799.Google Scholar
207Persson, L.-Å., Stecksen-Blick, C. & Holm, A.-K. (1984). Nutrition and health in childhood, causal and quantitative interpretations of dental caries. Community Dentistry and Oral Epidemiology 12, 390397.Google Scholar
208Pickerill, H. P. (1912). Prevention of Dental Caries and Oral Sepsis, p. 140. London: Baillière, Tindall and Cox.Google Scholar
209Pindborg, J. J. (1949). The effect of methyl folic acid on the periodontal tissue in rat molars (experimental granulocytopenia). Oral Surgery, Oral Medicine and Oral Pathology 2, 14851496.Google Scholar
210Poulsen, S., Larsen, M. J. & Larsen, R. H. (1976). Effect of fluoridated milk and water on enamel fluoride content and dental caries in the rat. Caries Research 10, 227233.Google Scholar
211Rankine, C. A. N., Prihoda, T. J., Etzel, K. R. & Labadie, D. (1989). Plaque fluid pH, calcium and phosphorus responses to calcium food additives in a chewable candy. Archives of Oral Biology 34, 821824.Google Scholar
212Rateitschak-Pluss, E. M. & Guggenheim, B. (1982). Effects of a carbohydrate free diet and sugar substitutes on dental plaque accumulation. Journal of Clinical Periodontology 9, 239251.Google Scholar
213Reuter, J. E. (1978). Unusual dental incisal erosion. British Dental Journal 145, 274.Google Scholar
214Reynolds, E. C. (1987). The prevalence of subsurface demineralization of bovine enamel and change in plaque composition by casein in an intra-oral model. Journal of Dental Research 66, 11201127.Google Scholar
215Reynolds, E. C. & Black, C. L. (1987). Reduction of chocolate's cariogenicity by supplementation with sodium caseinate. Caries Research 21, 445451.Google Scholar
216Reynolds, E. C. & Black, C. L. (1989). Cariogenicity of a confection supplemented with sodium caseinate at a palatable level. Caries Research 23, 368370.Google Scholar
217Reynolds, E. C. & Johnson, I. H. (1981). Effect of milk on caries incidence and bacterial composition of dental plaque in the rat. Archives of Oral Biology 26, 445451.Google Scholar
218Richardson, A. S., Hole, L. W., McCombie, F. & Kolthammer, J. (1972). Anticariogenic effect of di-calcium phosphate dihydrate chewing gum. Journal of the Canadian Dental Association 38, 213218.Google Scholar
219Rugarabaum, P., Frencken, J. E., Amuli, J. A. D. & Lihepa, A. (1990). Caries experience amongst 12- and 15-year-old Tanzanian children residing on a sugar estate. Community Dental Health 7, 5358.Google Scholar
220Rugg-Gunn, A. J. (1993). Nutrition and Dental Health. Oxford: Oxford Medical Publications.Google Scholar
221Rugg-Gunn, A. J., Edgar, W. M., Geddes, D. A. M. & Jenkins, G. N. (1975). The effect of different meal patterns upon plaque pH in human subjects. British Dental Journal 139, 351356.Google Scholar
222Rugg-Gunn, A. J., Edgar, W. M. & Jenkins, G. N. (1978). The effect of eating some British snacks upon the pH of human dental plaque. British Dental Journal 145, 95100.Google Scholar
223Rugg-Gunn, A. J., Edgar, W. M., Jenkins, G. N. & Cockburn, M. A. (1976). Plaque F and plaque acid production in children drinking milk fluoridated to 1 and 5 p.p.m. Journal of Dental Research 55, D143 (Abstr.)Google Scholar
224Rugg-Gunn, A. J., Hackett, A. F. & Appleton, D. R. (1987). Relative cariogenicity of starch and sugars in a two year longitudinal study of 405 English school-children. Caries Research 21, 464473.Google Scholar
225Rugg-Gunn, A. J., Hackett, A. F., Appleton, D. R., Jenkins, G. N. & Eastoe, J. E. (1984). Relationship between dietary habits and caries increment assessed over two years in 405 English adolescent schoolchildren. Archives of Oral Biology 29, 983992.Google Scholar
226Rugg-Gunn, A. J., Roberts, G. J. & Wright, W. G. (1985). The effect of human milk on plaque pH in situ and enamel dissolution in vitro compared with bovine milk, lactose and sucrose. Caries Research 19, 327334.Google Scholar
227Rusoff, L. L., Konikoff, B. S., Frye, J. B., Johnston, J. E. & Frye, W. W. (1962). Fluoride addition to milk and its effect on dental caries in school children. American Journal of Clinical Nutrition 11, 94101.Google Scholar
228Russell, A. L. (1963). International nutrition surveys: a summary of preliminary dental findings. Journal of Dental Research 42, 233244.Google Scholar
229Russell, A. L., Littleton, N. W., Leatherwood, E. C., Sydow, G. E. & Greene, J. C. (1960). Dental surveys in relation to nutrition. Public Health Reports 75, 717723.Google Scholar
230Russell, R. R. B., Aduse-Opoku, J., Sutcliffe, I. C., Tao, L. & Ferretti, J. J. (1992). A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. Journal of Biological Chemistry 267, 46314637.Google Scholar
231Sandstrom, B. & Lindqvist, L. W. (1987). The effect of different prosthetic restorations on the dietary selection of edentulous patients. Acta Odontologica Scandinavica 45, 423428.Google Scholar
232Sarnat, H., Eliaz, R., Feiman, G., Flexer, Z., Karp, M. & Laron, Z. (1985). Carbohydrate consumption and oral status of diabetic and non-diabetic young adolescents. Clinical and Preventive Dentistry 7, 2023.Google Scholar
233Sato, Y., Minagi, S., Akagawa, Y. & Nagasawa, T. (1989). An evaluation of chewing function of complete denture wearers. Journal of Prosthetic Dentistry 62, 5053.Google Scholar
234Schamschula, R. G., Adkins, B. L., Barmes, D. E., Charlton, G. & Davey, B. G. (1978). WHO Study of Dental Caries Etiology in Papua New Guinea. WHO Publication no. 40.Google Scholar
235Scheinin, A. (1979). Influence of the diagnostic level on caries incidence in two controlled clinical trials. Caries Research 13, 91 (Abstr. 20).Google Scholar
236Scheinin, A. & Mäkinen, K. K. (1975). Turku sugar studies I-XXI. Acta Odontologica Scandinavica 33, Suppl. 70, 1139.Google Scholar
237Schemmel, R. A., Krohn-Lutz, K., Lynch, P. & Kabara, J. J. (1982). Influence of dietary disaccharides on mouth microorganisms and experimental dental caries in rats. Archives of Oral Biology 27, 435441.Google Scholar
238Schmid, R., Cleaton-Jones, P. & Lutz, F. (1987). Cariogenicity of uncooked and cooked traditional African foodstuffs in rats. Caries Research 21, 339345.Google Scholar
239s'Gravenmade, E. J. & Jenkins, G. N. (1986). Isolation, purification and some properties of a potential cariostatic factor in cocoa that lowers enamel solubility. Caries Research 20, 433436.Google Scholar
240Shannon, I. L. & Gibson, W. A. (1965). Intravenous ascorbic acid loading in subjects classified as to periodontal status. Journal of Dental Research 44, 355361.Google Scholar
241Shaw, J. H. (1962). The relation of nutrition to periodontal disease. Journal of Dental Research 41, (Suppl.) 264274.Google Scholar
242Shaw, J. H. (1979). Changing food habits and our need for evaluation of the cariogenic potential of foods and confections. Pediatric Dentistry 1, 192198.Google Scholar
243Shaw, J. H. (1980). Influences of sodium, calcium and magnesium trimetaphosphates on dental caries activity in the rat. Journal of Dental Research 59, 644650.Google Scholar
244Shaw, J. H. (1983). Sugar and caries. 6. Evidence from experimental animal research. Journal of Dentistry 11, 209213.Google Scholar
245Shaw, J. H., Ensfield, B. J. & Wollman, D. H. (1959). Studies on the relation of dairy products to dental caries in caries-susceptible rats. Journal of Nutrition 67, 253273.Google Scholar
246Sidi, A. D. & Ashley, F. P. (1984). Influence of frequent sugar intakes on experimental gingivitis. Journal of Periodontology 55, 419423.Google Scholar
247Silva, M. F.de A., Jenkins, G. N., Burgess, R. C. & Sandham, H. J. (1986). Effects of cheese on experimental caries in human subjects. Caries Research 20, 263269.Google Scholar
248Silverstein, S. J., Knapp, J. F., Kircos, L. & Edwards, H. (1983). Dental caries prevalence in children with a diet free of refined sugar. American Journal of Public Health 73, 11961199.Google Scholar
249Slade, E. W., Bartuska, D., Rose, L. F. & Cohen, D. W. (1976). Vitamin E and periodontal disease. Journal of Periodontology 47, 352354.Google Scholar
250Smith, A. J. & Shaw, L. (1987). Baby fruit juices and tooth erosion. British Dental Journal 162, 6567.Google Scholar
251Sognnaes, R. F. (1948). Analysis of wartime reduction of dental caries in European children, with special reference to observations in Norway. American Journal of Diseases of Childhood 75, 792821.Google Scholar
252Sperling, G., Lovelace, F., Barnes, L. L., Smith, C. A. H., Saxton, J. A. & McCay, C. M. (1955). Effect of long time feeding of whole milk diets to white rats. Journal of Nutrition 55, 399414.Google Scholar
253Sreebny, L. M. (1982). The sugar-caries axis. International Dental Journal 32, 112.Google Scholar
254Sreebny, L. M. (1983). Cereal availability and dental caries. Community Dentistry and Oral Epidemiology 11, 148155.Google Scholar
255Stephan, R. M. (1940). Changes in hydrogen ion concentration on tooth surfaces and in carious lesions. Journal of the American Dental Association 27, 718723.Google Scholar
256Stephen, K. W., Boyle, I. T., Campbell, D., McNee, S. & Boyle, P. (1984). Five-year double-blind fluoridated milk study in Scotland. Community Dentistry and Oral Epidemiology 12, 223229.Google Scholar
257Stephen, K. W., Boyle, I. T., Campbell, D., McNee, S., Fyffe, J. A., Jenkins, A. S. & Boyle, P. (1981). A 4-year double-blind fluoridated school milk study in a vitamin-D deficient area. British Dental Journal 151, 287292.Google Scholar
258Sterkey, G., Kjellman, O., Högberg, O. & Löfroth, A.-L. (1971). Dietary composition and dental disease in adolescent diabetics. Acta Paediatrica Scandinavica 60, 461464.CrossRefGoogle Scholar
259Stralfors, A. (1966). Inhibition of hamster caries by cocoa. Archives of Oral Biology 11, 232238.Google Scholar
260Sundin, B., Birkhed, D. & Granath, L. (1983). Is there not a strong relationship nowadays between caries and consumption of sweets? Swedish Dental Journal 7, 103108.Google Scholar
261Sweeney, E. A., Saffir, A. J. & de Leon, R. (1971). Linear hypoplasia of deciduous incisor teeth in malnourished children. American Journal of Clinical Nutrition 24, 2931.Google Scholar
262Takahashi, K. (1961). Statistical study on caries incidence in the first molar in relation to the amount of sugar consumption. Bulletin of the Tokyo Dental College 2, 4457.Google Scholar
263Tank, G. & Storvick, C. A. (1965). Caries experience of children one- to six-years old in two Oregon communities (Corvallis and Albany). III. Relation of diet to variation of dental caries. Journal of the American Dental Association 70, 394403.Google Scholar
264Tanzer, J. M. & Slee, A. M. (1983). Saccharin inhibits tooth decay in laboratory models. Journal of the American Dental Association 106, 331333.Google Scholar
265Tavares, M., De Paola, P., Soparkar, P. & Joshipura, K. (1991). The prevalence of root caries in a diabetic population. Journal of Dental Research 70, 979983.Google Scholar
266Tehrani, A., Brudevold, F., Attarzadeh, F., van Houte, J. & Russo, J. (1983). Enamel demineralization by mouthrinses containing different concentrations of sucrose. Journal of Dental Research 62, 12161217.Google Scholar
267Thompson, M. E., Dever, J. G. & Pearce, E. I. F. (1984). Intra-oral testing of flavoured sweetened milk. New Zealand Dental Journal 80, 4446.Google Scholar
268Tomlinson, T. H. (1939). Oral pathology in monkeys in various experimental dietary deficiencies. Public Health Reports 54, 431439.Google Scholar
269Toth, K. (1976). A study of 8 years domestic salt fluoridation for prevention of caries. Community Dentistry and Oral Epidemiology 4, 106110.Google Scholar
270van Herpen, B. P. J. M. & Arends, J. (1986). Influence of the composition frequency of filled chocolate products on the demineralization of human enamel in vivo. A microhardness and microradiographic investigation. Caries Research 20, 529533.Google Scholar
271van Houte, J. & Duchin, S. (1975). Streptococcus mutans in the mouths of children with congenital sucrase deficiency. Archives of Oral Biology 20, 771773.Google Scholar
272Villa, A., Guerrero, S., Cisternas, P. & Monckeberg, F. (1989). Fluoride bio-availability from disodium monofluorophosphate fluoridated milk in children and rats. Caries Research 23, 179183.Google Scholar
273Vogel, R. I. (1977). Gingival hyperplasia and folic acid deficiency from anti-convulsive drug therapy: a theoretical relationship. Journal of Theoretical Biology 67, 269278.Google Scholar
274Vogel, R. I. & Deasy, M. (1978). The effect of folic acid on experimentally produced gingivitis. Journal of Preventive Dentistry 5, 3032.Google Scholar
275Vogel, R. I., Fink, R., Frank, O. & Baker, H. (1978). The effect of topical applications of folic acid on gingival health. Journal of Oral Medicine 33, 2022.Google Scholar
276Waerhaug, J. (1967). Prevalence of periodontal disease in Ceylon. Acta Odontologica Scandinavica 25, 205231.Google Scholar
277Walls, A. W. G. & Donachie, M. A. (1995). The dental status of a sample of the aging population in Newcastle upon Tyne, England. British Dental Journal (in press).Google Scholar
278Weiss, S. J. (1989). Tissue destruction by neutrophils. New England Journal of Medicine 320, 365376.Google Scholar
279Wespi-Eggenberger, H. J. (1948). [Observations on optimum nutrition in pregnancy. Salt and bread as vehicles of dietary supplements.] Schweizerische Medizinische Wochenschrift 78, 153155.Google Scholar
280Whiting, G. C., Sutcliffe, I. C. & Russell, R. R. B. (1993). Metabolism of polysaccharides by the Streptococcus mutans dexB gene product. Journal of General Microbiology 139, 20192026.Google Scholar
281WHO/FDI (1985). Report of a Working Group convened jointly by the FDI and the WHO: changing patterns of oral health and implications for oral health manpower, part 1. International Dental Journal 35, 235251.Google Scholar
282Woodward, M. & Walker, A. R. P. (1994). Sugar consumption and dental caries: evidence from 90 countries. British Dental Journal 176, 297302.Google Scholar
283Zahlaka, M., Mitri, O., Munder, H., Mann, J., Kaldavi, A., Galon, H. & Gedalia, I. (1987). The effect of fluoridated milk on caries in Arab children: results after 3 years. Clinical and Preventive Dentistry 9, 2325.Google Scholar
284Ziegler, E. (1962). Milk fluoridation. Bulletin der Schweizerischen Akademie der Medizinischen Wissenschaften 18, 379391.Google Scholar