Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T23:57:01.078Z Has data issue: false hasContentIssue false

Nutritional Constraints to Lean Tissue Accretion in Farm Animals

Published online by Cambridge University Press:  14 December 2007

R. G. Campbell
Affiliation:
Animal Research Institute, Werribee, Victoria 3030, Australia
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1988

References

REFERENCES

Agricultural Research Council (1975). The Nutrient Requirements of Farm Livestock No. 1, Poultry, 2nd ed. London: H. M. Stationery Office.Google Scholar
Agricultural Research Council (1981). The Nutrient Requirements of Pigs. 2nd ed. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Albertsson-Wikland, K., Eden, S. & Isaksson, O. (1979). In vitro effects of growth hormone on protein synthesis and amino acid transport in the rat diaphragm after acute hypophsectomy. Acta Physiologica Scandanavica 105, 215222.Google Scholar
Albertsson-Wikland, K., Eden, S. & Isaksson, O. (1980). Analysis of early responses to growth hormone on amino acid transport and protein synthesis in diaphragms of young rats. Endocrinology 106, 291298.CrossRefGoogle Scholar
Batterham, E. S., Giles, L. R. & Dettmann, B. E. (1985). Amino acid and energy interactions in growing pigs. 2. Effects of food intake, sex and live weight on responses to lysine concentration in barley based diets. Animal Production 42, 133144.Google Scholar
Black, J. L. (1983). Growth and development of lambs. In Sheep Production, pp. 2158 [Haresign, W., editor] London: Butterworths.Google Scholar
Black, J. L., Campbell, R. G., Williams, I. H., James, K. J. & Davies, G. T. (1986). Simulation of energy and amino acid utilization in the pig. Research and Development in Agriculture 3, 121145.Google Scholar
Black, J. L. & Griffiths, D. A. (1975). Effects of live weight and energy intake on nitrogen balance and total N requirements of lambs. British Journal of Nutrition 33, 399413.Google Scholar
Blaxter, K. L. & Wood, W. A. (1952). The nutrition of the young Ayrshire calf. Journal of Nutrition 6, 111.Google Scholar
Bolt, D. J., Pursel, V. G., Hammer, R. E., Wall, R. J., Palmiter, R. D. & Brinster, R. L. (1986). Plasma concentrations of human growth hormone and porcine growth hormone in transgenic pigs. Journal of Animal Science 63, suppl. 1, p. 220 Abstr.Google Scholar
Boyd, D. R., Bauman, D. E., Beerman, D. H., DeNeergard, A. F., Souza, L. & Butler, W. R. (1986). Titration of the bovine growth hormone dose which maximizes growth performance and lean deposition in swine. Journal of Animal Science 63, Suppl. 1, 218.Google Scholar
Brinster, R. L. & Palmiter, R. D. (1986). Introduction of genes into the germ lines of animals. Harvey Lectures, 80, 138.Google Scholar
Burke, W. H., Moore, J. A., Ogez, J. & Builder, S. E. (1987). The properties of recombinant chicken growth hormone and its effects on growth, body composition, feed efficiency and other factors in broiler chickens. Endocrinology 120, 651658.Google Scholar
Burlacu, G., Baia, G., Ionila, D., Moisa, D., Tascenco, V., Visan, I. & Stoica, I. (1973). Efficiency of the utilization of the energy of food in piglets, after weaning. Journal of Agricultural Science, Cambridge 81, 295302.Google Scholar
Butterfield, R. M., Griffiths, D. A., Thompson, J. M., Zamora, J. & James, A. M. (1983). Changes in body composition relative to weight and maturity of large and small strains of Australian Merino rams. 1. Muscle, bone and fat. Animal Production 36, 2938.Google Scholar
Butler-Hogg, B. W. & Johnsson, I. D. (1987). Bovine growth hormone in lambs: effects on carcass composition and tissue distribution in crossbred females. Animal Production 44, 117124.Google Scholar
Campbell, R. G., Caperna, T. J., Steele, N. C. & Mitchell, A. D. (1987). Effects of porcine pituitary growth hormone (pGH) administration and energy intake on growth performance of pigs from 25–55 kg body weight. Journal of Animal Science 65, Suppl. 1, p. 244 Abstr.Google Scholar
Campbell, R. G. & Dunkin, A. C. (1983 a). The effects of energy intake and dietary protein on nitrogen retention, growth performance, body composition and some aspects of energy metabolishm of baby pigs. British Journal of Nutrition 49, 221230.CrossRefGoogle ScholarPubMed
Campbell, R. G. & Dunkin, A. C. (1983 b). The influence of dietary protein and energy intake on the performance, body composition and energy utilization of pigs from 7 to 19 kg. Animal Production 36, 185192.Google Scholar
Campbell, R. G. & Dunkin, A. C. (1983 c). The influence of protein nutrition in early life on growth and development of the pig. 2. Effects on the cellularity of muscle and subcutaneous adipose tissue. British Journal of Nutrition 50, 619626.CrossRefGoogle ScholarPubMed
Campbell, R. G. & Taverner, M. R. (1985). Effect of strain and sex on protein and energy metabolism in growing pigs. In Energy Metabolism of Farm Animals. European Association of Animal Production Publication no. 32, pp. 7881 [Moe, R. W., Tyrell, H. F. and Reynolds, P. J., editors]. New Jersey: Rowman and Littlefield.Google Scholar
Campbell, R. G., Taverner, M. R. & Curic, D. M. (1983). The influence of feeding level from 20 to 45 kg live weight on the performance and body composition of female and entire male pigs. Animal Production 36, 193199.Google Scholar
Campbell, R. G., Taverner, M. R. & Curic, D. M. (1984). Effect of feeding level and dietary protein content on the growth, body composition and rate of protein deposition in pigs growing from 45 to 90 kg. Animal Production 38, 233240.Google Scholar
Campbell, R. G., Taverner, M. R. & Curic, D. M. (1985 a). The influence of feeding level on the protein requirement of pigs between 20 and 45 kg live weight. Animal Production 40, 489496.Google Scholar
Campbell, R. G., Taverner, M. R. & Curic, D. M. (1985 b). Effects of sex and energy intake between 48 and 90 kg live weight on protein deposition in growing pigs. Animal Production 40, 497503.Google Scholar
Campbell, R. G., Taverner, M. R. & Curic, D. M. (1986). The effects of dietary fibre, source of fat and dietary energy concentration on the voluntary food intake and performance of growing pigs. Animal Producfion 43, 327334.Google Scholar
Campbell, R. G., Taverner, M. R. & Mullaney, P. D. (1975). The effects of dietary concentrations of digestible energy on the performance and carcass characteristics of early-weaned pigs. Animal Production 21, 285294.Google Scholar
Carr, J. R., Boorman, K. N. & Cole, D. J. A. (1977). Nitrogen retention in the pig. British Journal of Nutrition 37, 143155.CrossRefGoogle ScholarPubMed
Chung, C. S., Etherton, T. D. & Wiggins, J. P. (1985). Stimulation of swine growth by porcine growth hormone. Journal of Animal Science 60, 118130.CrossRefGoogle ScholarPubMed
Close, W. H., Stainer, M. W. & Sanz Sampelayo, M. R. (1979). The energy requirements for growth in the early-weaned pig. Proceedings of the Nutrition Society 38, 47 A.Google Scholar
Dunkin, A. C. & Black, J. L. (1985). The relationships between energy intake and nitrogen balance in the growing pig. In Energy Metabolism of Farm Animals. European Association of Animal Production Publication no. 32, pp. 110114 [Moe, P. W., Tyrell, H. F. and Reynolds, P. J., editors]. New Jersey: Rowman and Littlefield.Google Scholar
Dunkin, A. C., Black, J. L. & James, K. J. (1984). Relationship between energy intake and nitrogen retention in the finisher pig. Proceedings of the Australian Society of Animal Production 15, 672 Abstr.Google Scholar
Dunkin, A. C., Black, J. L. & James, K. J. (1986). Nitrogen balance in relation to energy intake in entire male pigs weighing 75 kg. British Journal of Nutrition 55, 201207.CrossRefGoogle ScholarPubMed
Eiscmann, J. H., Hammond, A. C., Bauman, D. E., Reynolds, P. J., McCutcheon, S. N., Tyrell, H. F. & Haaland, G. L. (1986). Effect of bovine growth hormone administration on metabolism of growing Hereford heifers: protein and lipid metabolism and plasma concentrations of metabolites and hormones. Journal of Nutrition 116, 25042511.Google Scholar
Ellis, M., Smith, W. C., Henderson, R., Whittemore, C. T. & Laird, R. (1983). Comparative performance and body composition of control and selection line Large White pigs. 2. Feeding to appetite for a fixed time. Animal Production 36, 407413.Google Scholar
Etherton, T. D., Wiggins, J. P., Chung, C. S., Evock, C. M., Rebhun, J. F. & Walton, P. E. (1986). Stimulation of pig growth performance by porcine growth hormone and growth hormone releasing factor. Journal of Animal Science 63, 13891399.CrossRefGoogle ScholarPubMed
Etherton, T. D., Wiggins, J. P., Chung, C. S., Evock, C. M., Rebhun, S. F., Walton, P. E. & Steele, N. C. (1987). Stimulation of pig growth performance by porcine growth hormone: Determination of the dose-response relationship. Journal of Animal Science 64, 433442.CrossRefGoogle ScholarPubMed
Farrell, D. J., Hardaker, J. B., Battse, G. E. & Cumming, R. B. (1977). Effects of variation in dietary energy concentration of starter and finisher diets on broiler production. Australian Journal of Experimental Agriculture and Animal Husbandry 17, 755760.CrossRefGoogle Scholar
Farrell, D. J., Hardaker, J. R., Greig, I. D. & Cumming, R. B. (1976). Effects of dietary energy concentration on production of broiler chickens. Australian Journal of Agriculture and Animal Husbandry 16, 672678.Google Scholar
Gous, R. M. & Morris, T. R. (1985). Evaluation of a diet dilution technique for measuring the response of broiler chickens to increasing concentrations of lysine. British Poultry Science 26, 147161.CrossRefGoogle ScholarPubMed
Gregory, N. G., Lovell, R. D., Wood, J. D. & Lister, D. (1977). Insulin-secreting ability in Pietrain and Large White pigs. Journal of Agricultural Science, Cambridge 89, 407413.Google Scholar
Hammer, R. E., Pursel, V. G., Rexroad, C. E. Jr, Wall, R. J., Bolt, D. J., Ebert, K. M., Palmiter, R. D. & Brinster, R. L. (1985). Production of transgenic rabbits, sheep and pigs by micro-injection. Nature 351, 680683.CrossRefGoogle Scholar
Hartsook, E. W. & Hershberger, T. V. (1971). Interactions of major nutrients in whole-animal energy metabolism. Federation Proceedings 30, 14661473.Google Scholar
Henderson, R., Whittemore, C. T., Ellis, M., Smith, W. C., Laird, R. & Phillips, P. (1983). Comparative performance and body composition of control and selection line Large White pigs. 1. On a generous fixed feeding scale for a fixed time. Animal Production 36, 399405.Google Scholar
Hentges, E. J., Marple, D. N., Roland, D. A. & Pritchett, J. F. (1983). Growth and in vitro protein synthesis in two strains of chicks. Journal of Animal Science 57, 320327.Google Scholar
Hodge, R. W. (1974). Efficiency of feed conversion and body composition of the preruminant lamb and the young pig. British Journal of Nutrition 32, 113126.CrossRefGoogle Scholar
Holmes, C. W., Carr, J. R. & Pearson, G. (1980). Some aspects of the energy and nitrogen metabolism of boars, gilts and barrows given diets containing different concentrations of protein. Animal Production 31, 279289.Google Scholar
Jacob, R., Barrett, E., Plewe, G., Fagin, K., King, J. & Sherwin, R. (1987). Insulin-like growth factor 1 inhibits proteolysis in the fasted rat. Proceedings of the 69th meeting of the Endocrine Society. Journal of Endocrinology 120, Suppl., 223227.Google Scholar
Johnson, R. J., Fairclough, R. J. & Cahill, L. P. (1987). Temporal secretory patterns of growth hormone in young meat-type poultry. British Poultry Science 28, 103111.Google Scholar
Johnson, R. J., Fairclough, R. J., Cahill, L. P. & Parr, R. (1985). Temporal secretory patterns of growth hormone in the domestic fowl. Proceedings of the Endocrine Society of Australia 28, 106 Abstr.Google Scholar
Johnsson, I. D., Hart, I. C. & Buttler-Hog, B. W. (1985). The effects of exogenous bovine growth hormone and bromocriptine on growth, body development, fleece weight and plasma concentrations of growth hormone, insulin and prolactin in female lambs. Animal Production 41, 207218.Google Scholar
Leclercq, B. (1983). The influence of dietary protein content on the performance of genetically lean or fat growing chickens. British Poultry Science 24, 581587.Google Scholar
Leclercq, B. & Saadoun, A. (1982). Comparison of energy metabolism in genetically lean or fat lines of broilers. In Energy Metabolism of Farm Animals. European Association of Animal Production Publication no. 29, pp. 274277 [Ekern, A. and Sundstøl, F., editors]. Aas, Norway: Agricultural University of Norway.Google Scholar
Leung, F. C., Taylor, J. E., Wien, S. & Van Iderstine, A. (1986). Purified chicken growth hormone (GH) and a human pancreatic GH-releasing hormone increase body weight gain in chickens. Endocrinology. 118, 19611965.CrossRefGoogle Scholar
Lobley, G. E., Connell, A., Mollison, G., Brewer, A., Harris, C. J., Buchan, V. & Galbraith, H. (1985). The effects of a combined implant of trenbolone acetate and oestradiol-17β on protein and energy metabolism in finishing beef steers. British Journal of Nutrition 54, 681694.Google Scholar
Machlin, L. J. (1972). Effect of growth hormone on growth and carcass composition of the pig. Journal of Animal Science 35, 794800.CrossRefGoogle ScholarPubMed
Moody, W. G., Enser, M. B., Wood, J. D., Restall, D. J. & Lister, D. (1978). Comparison of fat and muscle development in Pietrain and Large White pigs. Journal of Animal Science 46, 628633.CrossRefGoogle Scholar
National Research Council (1979). Nutrient Requirements of Domestic Animals no. 2, Nutrient Requirements of Swine. Washington, DC: National Academy of Sciences.Google Scholar
National Research Council (1984). Nutrient Requirements of Poultry. Washington, DC: National Academy Press.Google Scholar
Pesti, G. M. & Smith, C. F. (1984). The response of growing broiler chickens to dietary contents of protein, energy and added fat. British Poultry Science 25, 127138.Google Scholar
Savidge, J. A., Cole, D. J. A. & Lewis, D. (1984). A study of dietary energy density and genotype interaction on the voluntary intake of pigs. Animal Production 38, 535 Abstr.Google Scholar
Schneider, W., Gaus, G., Michel, A., Susenbeth, A. & Menke, K. H. (1982). Effect of level of feeding and body weight on partition of energy in growing pigs. In Energy Metabolism of Farm Animals. European Association of Animal Production Publication no. 29, pp. 225228 [Ekern, A. and Sundsterl, F., editors] Aas, Norway: Agricultural University of Norway.Google Scholar
Seamark, R. F. (1987). The potential of transgenic pigs and related technology for the pig industry. In Manipulating Pig Production, pp. 165170 [Barnett, J. L., Batterham, E. S., Cronin, G. M., Hansen, C., Hemsworth, P. H., Hennessy, D. P., Hughes, P. E., Johnston, N. E. and King, R. H., editors]. Victoria, Australia: V.I.P. Printing.Google Scholar
Searle, T. W. & Griffiths, D. A. (1976). Differences in body composition between three breeds of sheep. Proceedings of the Australian Society of Animal Production 11, 5760.Google Scholar
Siebritts, F. K. & Kemm, E. H. (1982). Body composition and energetic efficiency of lean and obese pigs. In Energy Metabolism of Farm Animals. European Association of Animal Production Publication no. 29, pp. 237241a [Ekern, A. and Sundstøl, F., editors]. Aas, Norway: Agricultural University of Norway.Google Scholar
Siebritts, F. K., Kemm, E. H., Ras, M. N. & Barnes, P. M. (1986). Protein deposition in pigs as influenced by sex, type and live mass. 1. The pattern and composition of protein deposition. South African Journal of Animal Science 16, 2327.Google Scholar
Theriez, M., Tisser, M. & Robelin, R. (1981). The chemical composition of the intensively fed lamb. Animal Production 32, 2937.Google Scholar
Thompson, J. M., Atkins, K. D. & Gilmour, A. R. (1979). Carcass characteristics of heavy weight crossbred lambs. II. Carcass composition and partitioning of fat. Australian Journal of Agricultural Research 30, 12151221.CrossRefGoogle Scholar
Tullis, J. B. (1982). Protein growth in pigs. PhD Thesis, University of Edinburgh.Google Scholar
Wagner, T. E. (1985). The role of gene transfer in animal agriculture and biotechnology. Canadian Journal of Animal Science 65, 539552.Google Scholar
Walker, D. M. & Norton, B. W. (1971). The utilization of the metabolizable energy of diets of different protein content by the milk-fed lamb. Journal of Agricultural Science, Cambridge 77, 363369.CrossRefGoogle Scholar
Walton, P. E. & Etherton, T. D. (1986). Stimulation of lipogenesis by insulin in swine adipose tissue: Antagonism by porcine growth hormone. Journal of Animal Science 62, 15841595.Google Scholar
Walton, P. E., Etherton, T. D. & Chung, C. S. (1987). Exogenous pituitary and recombinant growth hormones induce insulin and insulin-like growth factor 1 resistance in pig adipose tissue. Domestic Animal Endocrinology 4, 183190.CrossRefGoogle ScholarPubMed
Walton, P. E., Etherton, T. D. & Evock, C. M. (1986). Antagonism of insulin action in cultured pig adipose tissue by pituitary and recombinant porcine growth hormone: Potentiation by hydrocortisone. Endocrinology 118, 25772581.Google Scholar
Webster, A. J. F., Lobley, G., Reeds, P. J. & Pullar, J. D. (1978). Protein mass, protein synthesis and heat loss in the Zucker rat. Proceedings of the Nutrition Society 37, 21A.Google Scholar
Webster, A. J. F., Smith, J. S. & Mollison, G. S. (1977). Prediction of the energy requirements for growth in beef cattle. B. Body weight and heat production in Hereford & British Fresian bulls and steers. Animal Production 24, 237244.Google Scholar
Whittemore, C. T. (1986). An approach to pig growth modelling. Journal of Animal Science 63, 615621.CrossRefGoogle Scholar
Whittemore, C. T. & Fawcett, R. H. (1976). Theoretical aspects of a flexible model to simulate protein and lipid growth in pigs. Animal Production 22, 8796.Google Scholar
Williams, I. H. (1976). Nutrition of the young pig in relation to body composition. PhD Thesis, University of Melbourne.Google Scholar
Williams, W. D., Cromwell, G. L., Stahly, T. S. & Overfield, L. (1984). The lysine requirement of the growing boar versus barrow. Journal of Animal Science 58, 657665.Google Scholar
Wood, J. D., Enser, M. B. & Restall, D. J. (1975). Fat cell size in Pietrain and Large white pigs. Journal of Agricultural Science, Cambridge 84, 221225.Google Scholar
Yen, H. T., Cole, D. J. A. & Lewis, D. (1986). Amino acid requirements of growing pigs. 8. The response of pigs from 50 to 90 kg live weight to dietary ideal protein. Animal Production 43, 155166.Google Scholar