Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T15:33:48.277Z Has data issue: false hasContentIssue false

The Nutrition of Fish: The Developing Scene

Published online by Cambridge University Press:  14 December 2007

C. B. Cowey
Affiliation:
NERC Institute of Marine Biochemistry, Aberdeen
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1988

References

REFERENCES

Ablett, R. F., Taylor, M. J. & Selivonchick, D. P. (1983). The effect of high protein and high carbohydrate diets on [125I]iodoinsulin binding in skeletal muscle plasma membranes and isolated hepatocytes of rainbow trout (Salmo gairdneri). British Journal of Nutrition 50, 129139.CrossRefGoogle ScholarPubMed
Ackman, R. G. & Takeuchi, T. (1986). Comparison of fatty acids and lipids of smolting hatchery-fed and wild Atlantic salmon Salmo salar. Lipids 21, 117120.CrossRefGoogle ScholarPubMed
Anderson, A. A., Fletcher, T. C. & Smith, G. M. (1981). Prostaglandin biosynthesis in the skin of the plaice Pleuronectes platessa. Comparative Biochemistry and Physiology 70C, 195199.Google Scholar
Arai, S. (1981). A purified test diet for coho salmon, Oncorhynchus kisutch, fry. Bulletin of the Japanese Society of Scientific Fisheries 47, 547550.CrossRefGoogle Scholar
Baker, D. H. (1986). Problems and pitfalls in animal experiments designed to establish dietary requirements for essential nutrients. Journal of Nutrition 116, 23392349.CrossRefGoogle ScholarPubMed
Bandyopadhya, G. K., Dutta, J. & Ghosh, S. (1982). Synthesis of diene prostaglandins in freshwater fish. Lipids 17, 755758.CrossRefGoogle Scholar
Beamish, F. W. H. (1974). Apparent specific dynamic action of largemouth bass, Micropterus salmoides. Journal of the Fisheries Research Board of Canada 31, 17631769.CrossRefGoogle Scholar
Beamish, F. W. H., Hilton, J. W., Niimi, E. & Slinger, S. J. (1986). Dietary carbohydrate and growth, body composition and heat increment in rainbow trout (Salmo gairdneri). Fish Physiology and Biochemistry 1, 8591.CrossRefGoogle ScholarPubMed
Bell, M. V., Henderson, R. J., Pirie, B. J. S. & Sargent, J. R. (1985). Effects of dietary polyunsaturated fatty acid deficiencies on mortality, growth and gill structure in the turbot (Scophthalmus maximus) Journal of Fish Biology 26, 181191.CrossRefGoogle Scholar
Bell, M. V., Simpson, C. M. F. & Sargent, J. R. (1983). (n-3) and (n-6) Polyunsaturated fatty acids in the phosphoglycerides of salt-secreting epithelia from two marine fish species. Lipids 18, 720726.CrossRefGoogle ScholarPubMed
Bergot, F. & Breque, J. (1983). Digestibility of starch by rainbow trout: effects of the physical state of starch and of the intake level. Aquaculture 34, 203212.CrossRefGoogle Scholar
Bever, K., Chenowith, M. & Dunn, A. (1977). Glucose turnover in kelp bass (Paralabrax sp.): in vivo studies with [6-3H, 6-14C]glucose. American Journal of Physiology 232, R66R72.Google ScholarPubMed
Bever, K., Chenowith, M. & Dunn, A. (1981). Amino acid gluconeogenesis and glucose turnover in kelp bass (Paralabrax sp.). American Journal of Physiology 240, R246R252.Google ScholarPubMed
Blazer, V. S. & Wolke, R. E. (1984). The effect of α-tocopherol on the immune response and non-specific resistance factors of rainbow trout (Salmo gairdneri). Aquaculture 37, 19.CrossRefGoogle Scholar
Brenner, R. R. & Peluffo, R. O. (1966). Effect of saturated and unsaturated fatty acids on the desaturation in vitro of palmitic, stearic, linoleic and linolenic acids. Journal of Biological Chemistry 241, 52135219.CrossRefGoogle ScholarPubMed
Brett, J. R. & Groves, T. D. D. (1979). Physiological energetics. In Fish Physiology. Vol. 8, Bioenergetics and Growth, pp. 279352 [Hoar, W. S., Randall, D. J. and Brett, J. R., editors]. New York: Academic Press.CrossRefGoogle Scholar
Brett, J. R. & Zala, C. A. (1975). Daily pattern of nitrogen excretion and oxygen consumption of sockeye salmon (Oncorhynchus nerka) under controlled conditions. Journal of the Fisheries Research Board, Canada 32, 24792486.CrossRefGoogle Scholar
Castell, J. D., Lee, D. J. & Sinnhuber, R. O. (1972 a). Essential fatty acids in the diet of rainbow trout (Salmo gairdneri): lipid metabolism and fatty acid composition. Journal of Nutrition 102, 93100.CrossRefGoogle ScholarPubMed
Castell, J. D., Sinnhuber, R. O., Wales, J. H. & Lee, D. J. (1972 b). Essential fatty acids in the diet of rainbow trout (Salmo gairdneri): Growth, feed conversion and some gross deficiency symptoms. Journal of Nutrition 102, 7786.CrossRefGoogle ScholarPubMed
Chiu, Y. N., Austic, R. E. & Rumsey, G. L. (1986). Urea cycle activity and arginine formation in rainbow trout (Salmo gairdneri). Journal of Nutrition 116, 16401650.CrossRefGoogle ScholarPubMed
Cho, C. Y. (1982). Effects of dietary protein and lipid levels on energy metabolism of rainbow trout (Salmo gairdneri). European Association of Animal Production Publication no. 29, pp. 250254.Google Scholar
Cho, C. Y. & Kaushik, S. J. (1985). Effects of protein intake on metabolizable and net energy values of fish diets. In Nutrition and Feeding in Fish, pp. 95117 [Cowey, C. B., Mackie, A. M. and Bell, J. G., editors]. London: Academic Press.Google Scholar
Cho, C. Y., Slinger, S. J. & Bailey, H. S. (1982). Bioenergetics of salmonid fishes: energy intake, expenditure and productivity. Comparative Biochemistry and Physiology 73B, 2541.Google Scholar
Christ, E. J. & Van Dorp, D. A. (1972). Comparative aspects of prostaglandin biosynthesis in animal tissues. Biochimica et Biophysica Acta 270, 537545.CrossRefGoogle ScholarPubMed
Cornish, I. & Moon, T. W. (1985). Glucose and lactate kinetics in American eel Anguilla rostrata. American Journal of Physiology 249, R67R72.Google ScholarPubMed
Cowey, C. B., Adron, J. W., Owen, J. M. & Roberts, R. J. (1976 a). The effect of different dietary oils on tissue fatty acids and tissue pathology in turbot, Scophthalmus maximus. Comparative Biochemistry and Physiology 53B, 399403.Google Scholar
Cowey, C. B., Owen, J. M., Adron, J. W. & Middleton, C. (1976 b). Studies on the nutrition of marine flatfish. The effect of different dietary fatty acids on the growth and fatty acid composition of turbot (Scophthalmus maximus). British Journal of Nutrition 36, 479486.CrossRefGoogle ScholarPubMed
Dabrowski, K. R. (1981). Tryptophan requirement of common carp (Cyprinus carpio) fry. Zeitschrift für Tierphysiologie, Tierernährung and Futtermittelkunde 46, 64–71.CrossRefGoogle Scholar
French, C. J., Hochachka, P. W. & Mommsen, T. P. (1983). Metabolic organization of liver during spawning migration of sockeye salmon. American Journal of Physiology 245, R827R830.Google ScholarPubMed
Fujii, M. & Yone, Y. (1976). Studies on the nutrition of red sea bream – xiii. Effect of dietary linolenic acid and ω3 polyunsaturated fatty acids on growth and feed efficiency. Bulletin of the Japanese Society of Scientific Fisheries 42, 583588.CrossRefGoogle Scholar
Furuichi, M. & Yone, Y. (1980). Effect of dietary dextrin levels on the growth and feed efficiency, the chemical composition of liver and dorsal muscle, and the absorption of dietary protein and dextrin in fishes. Bulletin of the Japanese Society of Scientific Fisheries 46, 225229.CrossRefGoogle Scholar
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980). A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochemical Journal 192, 719723.CrossRefGoogle ScholarPubMed
Garlick, P. J. & Marshall, J. (1972). A technique for measuring brain protein synthesis. Journal of Neurochemistry 19, 577583.CrossRefGoogle ScholarPubMed
Girard, J. P., Thomson, A. J. & Sargent, J. R. (1977). Adrenalin induced turnover of phosphatidic acid and phosphatidyl inositol in chloride cells from the gills of Anguilla anguilla. FEBS Letters 7, 267270.CrossRefGoogle Scholar
Gunstone, F. D., Wijesundera, R. C. & Scrimgeour, C. M. (1978). The component acids of lipids from marine and freshwater species with special reference to furan-containing acids. Journal of the Science of Food and Agriculture 29, 539550.CrossRefGoogle Scholar
Hagve, T., Christophersen, B. O. & Dannevig, B. H. (1986). Desaturation and chain elongation of essential fatty acids in isolated liver cells from rat and rainbow trout. Lipids 21, 202205.CrossRefGoogle ScholarPubMed
Halver, J. E. (1985). Recent advances in vitamin nutrition and metabolism in fish. In Nutrition and Feeding in Fish, pp. 415429 [Cowey, C. B., Mackie, A. M. and Bell, J. G., editors]. London: Academic Press.Google Scholar
Halver, J. E., DeLong, D. C. & Mertz, E. T. (1958). Threonine and lysine requirements of chinook salmon. Federation Proceedings 18, 2076.Google Scholar
Halver, J. E., Smith, R. R., Tolbert, B. M. & Baker, E. M. (1975). Utilization of ascorbic acid in fish. Annals of the New York Academy of Sciences 258, 81102.CrossRefGoogle ScholarPubMed
Haschemeyer, A. E. V. (1969 a). Rates of polypeptide chain assembly in liver in vivo: Relation to the mechanism of temperature acclimation in Opsanus tau. Proceedings of the National Academy of Sciences, U.S.A. 62, 128135.CrossRefGoogle Scholar
Haschemeyer, A. E. V. (1969 b). Studies on the control of protein synthesis in low temperature acclimation. Comparative Biochemistry and Physiology 28, 535552.CrossRefGoogle ScholarPubMed
Hazel, J. R. (1979). Influence of thermal acclimation on membrane lipid composition of rainbow trout liver. American Journal of Physiology 236, R91R101.Google ScholarPubMed
Hazel, J. R. & Zerba, E. (1986). Adaptation of biological membranes to temperature: molecular species compositions of phosphatidyl choline and phosphatidyl ethanolamine in mitochondrial and microsomal membranes of liver from thermally acclimated rainbow trout. Journal of Comparative Physiology 156 B, 665674.CrossRefGoogle Scholar
Hilton, J. W. & Atkinson, J. L. (1982). Response of rainbow trout (Salmo gairdneri) to increased levels of available carbohydrate in practical trout diets. British Journal of Nutrition 47, 597608.CrossRefGoogle ScholarPubMed
Hilton, J. W., Atkinson, J. L. & Slinger, S. J. (1987). Evaluation of the net energy value of glucose (cerelose) and maize starch in diets for rainbow trout (Salmo gairdneri). British Journal of Nutrition 58, 453461.CrossRefGoogle ScholarPubMed
Hilton, J. W., Plisetskaya, E. M. & Leatherland, J. F. (1988). Does oral 3,5,3′-triiodo-L-thyronine affect dietary glucose utilization and plasma insulin levels in rainbow trout (Salmo gairdneri)? Fish Physiology and Biochemistry (In the Press.)Google Scholar
Houlihan, D. F., Hall, S. J., Gray, C. & Noble, B. S. (1988). Growth rates and protein turnover in cod, Gadus morhua. Canadian Journal of Fisheries and Aquatic Sciences (In the Press.)Google Scholar
Houlihan, D. F. & Laurent, P. (1987). Effects of exercise training on the performance, growth and protein turnover of rainbow trout (Salmo gairdneri). Canadian Journal of Fisheries and Aquatic Sciences 44, 16141621.CrossRefGoogle Scholar
Houlihan, D. F., McMillan, D. N. & Laurent, P. (1986). Growth rates, protein synthesis and protein degradation rates in rainbow trout: effects of body size. Physiological Zoology 59, 482493.CrossRefGoogle Scholar
Hughes, S. G., Rumsey, G. L. & Nickum, J. G. (1981). Riboflavin requirement of fingerling rainbow trout. Progressive Fish-Culturist 43, 167172.CrossRefGoogle Scholar
Ince, B. W. (1979). Insulin secretion from the in situ perfused pancreas of the European silver eel (Anguilla anguilla L). General and Comparative Endocrinology 367, 533540.CrossRefGoogle Scholar
Ince, B. W. (1980). Amino acid stimulation of insulin secretion from the in situ perfused eel pancreas; modification by somatostatin, adrenaline and theophylline. General and Comparative Endocrinology 40, 275282.CrossRefGoogle ScholarPubMed
Ince, B. W. & Thorpe, A. (1977). Glucose and amino acid-stimulated insulin release in vivo in the European silver eel (Anguilla anguilla L). General and Comparative Endocrinology 31, 249256.CrossRefGoogle ScholarPubMed
Kahn, C. R. (1979). The role of insulin receptors and receptor antibodies in states of altered insulin action. Proceedings of the Society for Experimental Biology and Medicine 162, 1321.CrossRefGoogle ScholarPubMed
Kanazawa, A. (1986). Essential fatty acid and lipid requirement of fish. In Nutrition and Feeding in Fish, pp. 281298. [Cowey, C. B., Mackie, A. M. and Bell, J. G., editors]. London: Academic Press.Google Scholar
Kanazawa, A., Teshima, S. & Ono, K. (1979). Relationship between essential fatty acid requirement of aquatic animals and the capacity for bioconversion of linolenic acid to highly unsaturated fatty acids. Comparative Biochemistry and Physiology 63B, 295298.Google Scholar
Kanazawa, A., Teshima, S., Sakamoto, M. & Awal, Md. A. (1980). Requirement of Tilapia zilli for essential fatty acids. Bulletin of the Japanese Society of Scientific Fisheries 46, 13531356.CrossRefGoogle Scholar
Kaushik, S. J. & Dabrowski, K. (1983). Nitrogen and energy utilization in juvenile carp (Cyprinus carpio) fed casein, amino acids or a protein-free diet. Reproduction, Nutrition Développement 23, 741754.CrossRefGoogle Scholar
Kaushik, S. J. & Oliva Teles, A. (1985). Effect of digestible energy on nitrogen and energy balance in rainbow trout. Aquaculture 50, 89101.CrossRefGoogle Scholar
Ketola, H. G. (1983). Requirement for dietary lysine and arginine of fry of rainbow trout. Journal of Animal Science 56, 101107.CrossRefGoogle ScholarPubMed
Kim, K., Kayes, T. B. & Admundson, C. H. (1987). Effects of dietary tryptophan level on growth, feed/gain, carcass composition and liver glutamate dehydrogenase activity in rainbow trout (Salmo gairdneri). Comparative Biochemistry and Physiology 88B, 737741.Google Scholar
Krebs, H. A. (1972). Some aspects of the regulation of fuel supply in omnivorous animals. Advances in Enzyme Regulation 10, 397420.CrossRefGoogle ScholarPubMed
Lall, S. P., Olivier, G., Hines, J. A. & Ferguson, H. W. (1988). The role of vitamin E in Atlantic salmon (Salmo salar) nutrition and immune response. Aquaculture (In the Press.)Google Scholar
Leger, C., Fremont, L. & Boudon, M. (1981). Fatty acid composition of lipids in the trout.I. Influence of dietary fatty acids on the triglyceride fatty acid desaturation in serum, adipose tissue, liver, white and red muscle. Comparative Biochemistry and Physiology 69B, 99105.Google Scholar
LeGrow, S. M. & Beamish, F. W. H. (1986). Influence of dietary protein and lipid on apparent heat increament of rainbow trout, Salmo gairdneri. Canadian Journal of Fisheries and Aquatic Sciences 43, 1925.CrossRefGoogle Scholar
Li, Y. & Lovell, R. T. (1985). Elevated levels of dietary ascorbic acid increase immune responses in channel catfish. Journal of Nutrition 115, 123131.CrossRefGoogle ScholarPubMed
Loughna, P. T. & Goldspink, G. (1984). The effects of starvation upon the protein turnover in red and white myotomal muscle of rainbow trout, Salmo gairdneri. Journal of Fish Biology 25, 223230.CrossRefGoogle Scholar
Loughna, P. T. & Goldspink, G. (1985). Muscle protein synthesis rates during temperature acclimation in a eurythermal (Cyprinus carpio) and a stenothermal (Salmo gairdneri) species of teleost. Journal of Experimental Biology 118, 267276.CrossRefGoogle Scholar
Miller, N. G. A., Hill, M. W. & Smith, M. W. (1976). Positional and species analysis of membrane phospholipids extracted from goldfish adapted to different environmental temperatures. Biochimica et Biophysica Acta 55, 644654.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J., Nnanyelugo, D. O. & Waterlow, J. C. (1976). The relative importance of muscle protein synthesis and breakdown in the regulation of muscle mass. Biochemical Journal 156, 185188.CrossRefGoogle ScholarPubMed
Murai, T., Andrews, J. W. & Bauernfeind, J. C. (1978). Use of L-ascorbic acid, ethocel coated ascorbic acid and ascorbate 2-sulphate in diets for channel catfish, Ictalurus punctatus. Journal of Nutrition 108, 17611766.CrossRefGoogle Scholar
Murai, T., Ogata, H., Hirasawa, T., Akiyama, T. & Nose, T. (1987). Portal absorption and hepatic uptake of amino acids in rainbow trout force fed complete diets containing casein or crystalline amino acids. Bulletin of the Japanese Society of Scientific Fisheries 53, 18471859.CrossRefGoogle Scholar
Nagai, M. & Ikeda, S. (1971). Carbohydrate metabolism in fish.I. Effects of starvation and dietary composition on the blood glucose level and the hepatopancreatic glycogen and lipid contents in carp. Bulletin of the Japanese Society of Scientific Fisheries 37, 404409.CrossRefGoogle Scholar
National Research Council (1981). Nutrient Requirements of Domestic Animals. no. 16, Nutrient Requirements of Coldwater Fishes. Washington, DC: National Academy Press.Google Scholar
Navarre, O. & Halver, J. E. (1988). Disease resistance and humoral antibody production in rainbow trout fed high levels of vitamin C. Aquaculture (In the Press.)Google Scholar
Ogata, H., Arai, S. & Nose, T. (1983). Growth responses of cherry salmon (Oncorhynchus masou) and Amago salmon (O. rhodurus) fry fed purified casein diets supplemented with amino acids. Bulletin of the Japanese Society of Scientific Fisheries 49, 13811385.CrossRefGoogle Scholar
Ogino, C. (1980). Requirements of carp and rainbow trout for essential amino acids. Bulletin of the Japanese Society for Scientific Fisheries 46, 171175.CrossRefGoogle Scholar
Owen, J. M., Adron, J. W., Middleton, C. & Cowey, C. B. (1975). Elongation and desaturation of dietary fatty acids in turbot, Scophthalmus maximus and rainbow trout, Salmo gairdneri. Lipids 10, 528531.CrossRefGoogle Scholar
Palmer, T. N. & Ryman, B. E. (1972). Studies on oral glucose intolerance in fish. Journal of Fish Biology 4, 311319.CrossRefGoogle Scholar
Pocrnjic, Z., Mathews, R. W., Rappaport, S. & Haschemeyer, A. E. V. (1983). Quantitative protein synthetic rates in various tissues of a temperate fish in vivo by the method of phenylalanine swamping. Comparative Biochemistry and Physiology 74B, 735738.Google Scholar
Randall, D. J., Perry, S. F. & Heming, T. A. (1982). Gas transfer and acid/base regulation in salmonids. Comparative Biochemistry and Physiology 73B, 93103.Google Scholar
Reeds, P. J. & Lobley, G. E. (1980). Protein synthesis: are there real species differences? Proceedings of the Nutrition Society 39, 4352.CrossRefGoogle ScholarPubMed
Renaud, J. M. & Moon, T. W. (1980). Starvation and the metabolism of hepatocytes isolated from the American eel, Anguilla rostrata. Journal of Comparative Physiology 135B, 127137.CrossRefGoogle Scholar
Robinson, E. H., Wilson, R. P. & Poe, W. E. (1981). Arginine requirement and apparent absence of a lysine-arginine antagonist in fingerling channel catfish. Journal of Nutrition 111, 4652.CrossRefGoogle ScholarPubMed
Sandnes, K., Hansen, T. & Waagbo, R. (1988). Ascorbate 2-sulphate as vitamin C source for Atlantic salmon (Salmo salar). Aquaculture (In the Press.)Google Scholar
Schiedt, K., Leuenberger, F. J., Vecchi, M. & Glinz, E. (1985). Absorption, retention and metabolic transformation of carotenoids in rainbow trout, salmon and chicken. Pure and Applied Chemistry 57, 685692.CrossRefGoogle Scholar
Seibert, H. (1985). Effects of temperature on glucose release and glycogen metabolism in isolated hepatocytes from rainbow trout (Salmo gairdneri). Comparative Biochemistry and Physiology 81B, 877883.Google Scholar
Shimeno, S., Hosokawa, H., Hirata, H. & Takeda, M. (1977). Comparative studies on carbohydrate metabolism of yellowtail and carp. Bulletin of the Japanese Society of Scientific Fisheries 43, 213217.CrossRefGoogle Scholar
Smith, M. A. K. (1981). Estimation of growth potential by measurement of protein synthetic rates in feeding and fasting rainbow trout, Salmo gairdneri. Journal of Fish Biology 19, 213220.CrossRefGoogle Scholar
Smith, M. A. K. & Haschemeyer, A. E. V. (1980). Protein metabolism and cold adaptation in Antarctic fishes. Physiological Zoology 53, 373382.CrossRefGoogle Scholar
Smith, R. R., Rumsey, G. L. & Scott, M. L. (1978). Heat increment associated with dietary protein, fat, carbohydrate and complete diets in salmonids: comparative energetic efficiency. Journal of Nutrition 108, 10251032.CrossRefGoogle ScholarPubMed
Spannhof, L. & Plantikow, H. (1983). Studies on carbohydrate digestion in rainbow trout. Aquaculture 30, 95108.CrossRefGoogle Scholar
Stickney, R. R. & Andrews, J. W. (1972). Effects of dietary lipids on growth, feed conversion, lipid and fatty acid composition of channel catfish. Journal of Nutrition 102, 249258.CrossRefGoogle Scholar
Suarez, R. K. & Mommsen, T. P. (1987). Gluconeogenesis in teleost fishes. Canadian Journal of Zoology 65, 18691882.CrossRefGoogle Scholar
Tacon, A. G. J. & Cowey, C. B. (1985). Protein and amino acid requirements. In Fish Energetics, New Perspectives, pp. 155183 [Tytler, P. and Calow, P., editors]. London: Croom Helm.CrossRefGoogle Scholar
Takeuchi, L., Takeuchi, T. & Ogino, C. (1980). Riboflavin requirements in carp and rainbow trout. Bulletin of the Japanese Society of Scientific Fisheries 46, 733737.CrossRefGoogle Scholar
Takeuchi, T., Satoh, S. & Watanabe, T. (1983). Requirement of Tilapia nilotica for essential fatty acids. Bulletin of the Japanese Society of Scientific Fisheries 49, 11271134.CrossRefGoogle Scholar
Takeuchi, T. & Watanabe, T. (1977 a). Dietary levels of methyl laurate and essential fatty acid requirement of rainbow trout. Bulletin of the Japanese Society of Scientific Fisheries 43, 893–898.Google Scholar
Takeuchi, T. & Watanabe, T. (1977 b). Effect of eicosapentaenoic acid and docosahexaenoic acid in pollock liver oil on growth and fatty acid composition of rainbow trout. Bulletin of the Japanese Society of Scientific Fisheries 43, 947953.CrossRefGoogle Scholar
Takeuchi, T. & Watanabe, T. (1982). Effects of various polyunsaturated fatty acids on growth and fatty acid compositions of rainbow trout, Salmo gairdneri, coho salmon, Oncorhynchus kisutch and chum salmon, Oncorhynchus keta. Bulletin of the Japanese Society of Scientific Fisheries 48, 17451752.CrossRefGoogle Scholar
Takeuchi, T., Watanabe, T. & Nose, T. (1979). Requirement for essential fatty acids of chum salmon (Oncorhynchus keta) in freshwater environment. Bulletin of the Japanese Society of Scientific Fisheries 45, 13191323.CrossRefGoogle Scholar
Tocher, D. R. & Sargent, J. R. (1984). Analyses of lipids and fatty acids in ripe roes of some northwest European marine fish. Lipids 19, 492499.CrossRefGoogle ScholarPubMed
Tocher, D. R. & Sargent, J. R. (1986). Incorporation of [1-14C]eicosapentaenoic acids into the phospholipids of peripheral blood neutrophils from the plaice, Pleuronectes platessa. Biochimica et Biophysica Acta 876, 592600d.CrossRefGoogle ScholarPubMed
Walton, M. J., Adron, J. W., Coloso, R. M. & Cowey, C. B. (1986). Dietary requirements of rainbow trout for tryptophan, lysine and arginine as determined by growth and biochemical measurements. Fish Physiology and Biochemistry 2, 161169.CrossRefGoogle ScholarPubMed
Walton, M. J. & Cowey, C. B. (1982). Aspects of intermediary metabolism in salmonid fish. Comparative Biochemistry and Physiology 73B, 5979.Google Scholar
Walton, M. J., Cowey, C. B. & Adron, J. W. (1982). Methionine metabolism in rainbow trout fed diets of differing methionine and cystine content. Journal of Nutrition 112, 15251535.CrossRefGoogle ScholarPubMed
Watanabe, T., Takashima, F. & Ogino, C. (1974). Effect of dietary methyl linolenate on growth of rainbow trout. Bulletin of the Japanese Society of Scientific Fisheries 40, 181188.CrossRefGoogle Scholar
Watanabe, T., Utsue, O., Kobayashi, I. & Ogino, C. (1975). Effect of dietary methyl linoleate and linolenate on growth of carp-I. Bulletin of the Japanese Society of Scientific Fisheries 41, 257262.CrossRefGoogle Scholar
Watt, P. W., Marshall, P. A., Heap, S. P., Loughna, P. T. & Goldspink, G. (1988). Protein synthesis in tissues of fed and starved carp, acclimated to different temperatures. Fish Physiology and Biochemistry 4, 165173.CrossRefGoogle ScholarPubMed
Weber, J. M., Brill, R. W. & Hochachka, P. W. (1986). Mammalian metabolite flux rates in a teleost: lactate and glucose turnover in tuna. American Journal of Physiology 250, R452R458.Google Scholar
Wilson, R. P. (1985). Amino acid and protein requirements of fish. In Nutrition and Feeding in Fish, pp. 116 [Cowey, C. B., Mackie, A. M. and Bell, J. G., editors]. London: Academic Press.Google Scholar
Wilson, R. P., Allen, O. W., Robinson, E. H. & Poe, W. E. (1978). Tryptophan and threonine requirements of fingerling channel catfish. Journal of Nutrition 108, 15951599.CrossRefGoogle ScholarPubMed
Wilson, R. P. & Halver, J. E. (1986). Protein and amino acid requirements of fishes. Annual Reviews of Nutrition 6, 225244.CrossRefGoogle ScholarPubMed
Wilson, R. P. & Poe, W. E. (1985). Relationship of whole body and egg essential amino acid requirement patterns in channel catfish (Ictalurus punctatus). Comparative Biochemistry and Physiology 80B, 385388.Google Scholar
Wilson, R. P. & Poe, W. E. (1987). Apparent inability of channel catfish to utilize dietary mono- and disaccharides as energy sources. Journal of Nutrition 117, 280285.CrossRefGoogle ScholarPubMed
Woodward, B. (1983). Sensitivity of hepatic D-amino acid oxidase and glutathione reductase to the riboflavin status of the rainbow trout (Salmo gairdneri). Aquaculture 34, 193201.CrossRefGoogle Scholar
Woodward, B. (1985). Riboflavin requirement for growth, tissue saturation and maximal flavin-dependent enzyme activity in young rainbow trout (Salmo gairdneri) at two temperatures. Journal of Nutrition 115, 7884.CrossRefGoogle ScholarPubMed
Yamada, K., Kobayashi, K. & Yone, Y. (1980). Conversion of linolenic acid to ω3-highly unsaturated fatty acids in marine fishes and rainbow trout. Bulletin of the Japanese Society of Scientific Fisheries 46, 12311233.CrossRefGoogle Scholar
Yamada, S., Simpson, K. L., Tanaka, Y. & Katayama, T. (1981). Plasma amino acid changes in rainbow trout force fed casein and a corresponding amino acid mixture. Bulletin of the Japanese Society of Scientific Fisheries 47, 10351040.CrossRefGoogle Scholar
Yone, Y. (1978). Essential fatty acids and lipid requirements of marine fish. In Dietary Lipids in Aquaculture, pp. 4359 [The Japanese Society of Scientific Fisheries, editors]. Koseisha-Koseikaku, Tokyo: Japanese Society of Scientific Fisheries.Google Scholar
Yone, Y. & Fujii, M. (1975 a). Studies on the nutrition of red sea bream – xi. Effect of ω3 fatty acid supplement in a corn oil diet on growth rate and feed efficiency. Bulletin of the Japanese Society of Scientific Fisheries 41, 7377.CrossRefGoogle Scholar
Yone, Y. & Fujii, M. (1975 b). Studies on the nutrition of red sea bream – xi. Effect of ω3 fatty acid supplement in a corn oil diet on fatty acid composition of fish. Bulletin of the Japanese Society of Scientific Fisheries 41, 7986.CrossRefGoogle Scholar
Yu, T. C. & Sinnhuber, R. O. (1972). Effect of dietary linolenic acid and docosahexaenoic acid on growth and fatty acid composition of rainbow trout (Salmo gairdneri) Lipids 7, 450454.CrossRefGoogle ScholarPubMed
Yu, T. C. & Sinnhuber, R. O. (1976). Growth response of rainbow trout (Salmo gairdneri) to dietary ω3 and ω6 fatty acids. Aquaculture 6, 309317.CrossRefGoogle Scholar
Yu, T. C. & Sinnhuber, R. O. (1979). Effect of dietary ω3 and ω6 fatty acids on growth and feed conversion efficiency of coho salmon (Oncorhynchus kisutch). Aquaculture 16, 3138.CrossRefGoogle Scholar
Yu, T. C., Sinnhuber, R. O. & Hendricks, J. D. (1979). Reproduction and survival of rainbow trout (Salmo gairdneri) fed linolenic acid as the only source of essential fatty acids. Lipids 14, 572575.CrossRefGoogle Scholar