Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T23:50:13.654Z Has data issue: false hasContentIssue false

Nutrition and Cancer – Some Biochemical Mechanisms

Published online by Cambridge University Press:  14 December 2007

Christine M. Williams
Affiliation:
Division of Nutrition, Department of Biochemistry, University of Surrey, Guilford GU2 5XH
J. W. T. Dickerson
Affiliation:
Division of Nutrition, Department of Biochemistry, University of Surrey, Guilford GU2 5XH
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1990

References

REFERENCES

Ames, B. N. (1979). Identifying environmental chemicals causing mutation and cancer. Science 204, 587594.Google Scholar
Anonymous, (1982). The function of retinol and retinoic acid in the testes. Nutrition Reviews 40, 187189.Google Scholar
Anthony, H. M. & Schorah, C. J. (1982). Severe hypovitaminosis C in lung-cancer patients. British Journal of Cancer 46, 354367.CrossRefGoogle ScholarPubMed
Armstrong, B. & Doll, R. (1975). Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. International Journal of Cancer 15, 617631.CrossRefGoogle ScholarPubMed
Atukorala, S., Basu, T. K., Dickerson, J. W. T., Donaldson, D. & Sakula, A. (1979). Vitamin A, zinc and lung cancer. British Journal of Cancer 40, 927931.Google Scholar
Aylsworth, C. F., Van Vugt, D. A., Sylvester, P. W. & Meites, J. (1981). A direct mechanism by which high fat diets stimulate mammary tumor development. Proceedings of the American Association for Cancer Research (AACR) ASCO 22, 12.Google Scholar
Aylsworth, C. F., Van Vugt, D. A., Sylvester, P. W. & Meites, J. (1984). Failure of high dietary fat to influence serum prolactin levels during the estrous cycle in female Sprague–Dawley rats. Proceedings of the Society for Experimental Biology and Medicine 175, 2529.Google Scholar
Becker, F. (1975). Cancer: A Comprehensive Treatise. New York: Plenum Press.Google Scholar
Ben-Amotz, A., Mokady, S., Edelstein, S. & Avron, M. (1989). Bioavailability of a natural isomer mixture as compared with synthetic cell-trans-β-carotene in rats and chicks. Journal of Nutrition 119, 10121019.CrossRefGoogle ScholarPubMed
Bennett, A. (1980). Prostaglandins and their synthesis inhibitors in cancer. In Hormones and Cancer, pp. 515516 [Iacobelli, S., editor]. New York: Raven Press.Google Scholar
Berlin, E., Matusik, E. J. & Young, C. (1980). Effect of dietary fat on the fluidity of platelet membranes. Lipids 15, 604608.Google Scholar
Berrino, F. & Muti, P. (1989). Mediterranean diet and cancer. European Journal of Clinical Nutrition 43, Suppl. 2, 4955.Google Scholar
Bhathena, S. J., Berlin, E. B., Judd, J., Nair, P. P., Kennedy, B. W., Jones, J., Smith, P. M., Jones, Y., Taylor, P. R. & Cambell, W. S. (1989). Hormones regulating lipid and carbohydrate metabolism in premenopausal women: modulation by dietary lipids. American Journal of Clinical Nutrition 49, 752757.Google Scholar
Boissonneault, G. A., Elson, C. E. & Pariza, M. W. (1986). Net energy effects of dietary fat on chemically induced mammary carcinogenesis in F344 rats. Journal of the National Cancer Institute 76, 335338.Google ScholarPubMed
Boni, L. T. & Rando, R. R. (1985). The nature of protein kinase C activation by physically defined phospholipid residues and diacylglycerols. Journal of Biological Chemistry 260, 10,81910,825.Google Scholar
Bosland, M. (1988). The etiopathogenesis of prostatic cancer with special reference to environmental factors. Advances in Cancer Research 51, 1106.Google Scholar
Boyd, N. F., Cousins, M., Beaton, M., Fishell, E., Wright, B., Fish, E., Kriukov, V., Lockwood, G., Tritchler, D., Wedad, H. & Page, D. L. (1988 a). Clinical trial of low-fat high carbohydrate diet in subjects with mammographic dysplasia: report of early outcomes. Journal of the National Cancer Institute 80, 12441248.CrossRefGoogle ScholarPubMed
Boyd, N. F., Shannon, P., Driukov, V., Fish, E., Lockwood, G., McGuire, V., Cousins, M., Mahoney, L., Lickley, L. & Tritchler, D. (1988 b). Effect of a low-fat high-carbohydrate diet on symptoms of cyclical mastopathy. Lancet ii, 128132.CrossRefGoogle Scholar
Boyd, P. & Leake, R. (1988). Progress in understanding breast cancer: epidemiological and biological interactions. Breast Cancer Research and Treatment 11, 91112.Google Scholar
Burr, M. L., Samloff, I. M., Bates, C. J. & Holliday, R. M. (1987). Atrophic gastritis and vitamin C status in two towns with different stomach cancer deaths. British Journal of Cancer 56, 163167.CrossRefGoogle Scholar
Byers, T. (1988). Diet and cancer. Any progress in the interim? Cancer 62, 17131724.Google Scholar
Carroll, K. K. & Khor, H. T. (1971). Effects of level and type of dietary fat on incidence of mammary tumors induced in female Sprague–Dawley rats by 7, 12-dimethylbenz(α)anthracene. Lipids 6, 415420.CrossRefGoogle Scholar
Carter, C. A., Milholland, R. J., Shea, W. & Ip, M. M. (1983). Effect of prostaglandin synthetase inhibitor indomethacin on 7,12-dimethylbenz(α)anthracene-induced mammary tumorigenesis in rats fed different levels of fat. Cancer Research 43, 35593562.Google Scholar
Cave, W. T. & Jurkowski, J. J. (1984). Dietary lipid effects on the growth, membrane composition and prolactin-binding capacity of rat mammary tumors. Journal of the National Cancer Institute 73, 185191.Google Scholar
Chan, P., Didato, F. & Cohen, L. A. (1975). High dietary fat, elevation of rat serum prolactin and mammary cancer. Proceedings of the Society of Experimental Biology and Medicine 149, 133135.CrossRefGoogle ScholarPubMed
Chan, P. C., Ferguson, K. A. & Dao, T. L. (1983). Effects of different dietary fats on mammary carcinogenesis Cancer Research 43, 10791083.Google Scholar
Chaudhy, N. A., Jafarey, N. A. & Ibrahim, K. (1980). Plasma vitamin A and carotene levels in relation to the clinical stage of carcinoma of the oral cavity and oropharynx. Journal of the Pakistan Medical Association 30, 221223.Google Scholar
Chilvers, C., Fraser, P. & Beral, V. (1979). Alcohol and oesophageal cancer: an assessment of the evidence from routinely collected data. Journal of Epidemiology and Community Health 33, 127133.CrossRefGoogle ScholarPubMed
Cohen, L. A., Thompson, D. O., Maeura, Y. & Weisburger, J. H. (1984). Influence of dietary medium-chain triglycerides on the development of Nmethylnitrosourea-induced rat mammary tumors. Cancer Research 44, 50235028.Google ScholarPubMed
Colditz, G. A., Branch, L. G., Lipnick, R. J., Willett, W. C., Rosner, B., Bosner, B. M. & Hennekens, C. H. (1985). Increased green and red vegetable intake and hormonal cancer deaths in an elderly population. American Journal of Clinical Nutrition 41, 3236.CrossRefGoogle Scholar
Committee on Diet, Nutrition and Cancer (1982). Assembly of Life Sciences, National Research Council. Diet, Nutrition and Cancer, pp. 116. Washington, DC: National Academy Press.Google Scholar
Conn, P. M., Gangong, B. R., Ebeling, J., Staley, D., Neidel, J. E. & Bell, R. M. (1985). Diacylglycerols release LH: structure-activity relations reveal a role for protein kinase C. Biochemical and Biophysical Research Communications 126, 532539.Google Scholar
Correa, P. (1981). Nutrition and cancer: epidemiologic correlations. In The Practice of Cancer Prevention in Clinical Medicine, pp. 110 [Newell, G. R., editor]. New York: Raven Press.Google Scholar
Correa, P., Fontham, E., Pickle, L. W., Chen, V., Lin, Y. & Haenslel, W. (1985). Dietary determinants of gastric cancer in South Louisiana. Journal of the National Cancer Institute 75, 645653.Google Scholar
Dao, T. L. & Chan, P. C. (1983). Effect of duration of rat intake on enhancement of mammary carcinogenesis in rats. Journal of the National Cancer Institute 71, 201205.Google ScholarPubMed
Doll, R. & Peto, R. (1981). The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. Journal of the National Cancer Institute 66, 11911308.CrossRefGoogle ScholarPubMed
Donato, K. & Hegsted, D. M. (1985). Efficiency of utilisation of various sources of energy for growth. Proceedings of the National Academy of Sciences USA 82, 48664870.CrossRefGoogle ScholarPubMed
Donegan, W. L., Hartz, A. J. & Rimm, A. A. (1978). The association of body weight with recurrent cancer of the breast. Cancer 41, 15901594.Google Scholar
Emerit, I., Levy, A. & Cerutti, L. (1983). Suppression of tumor promoter phorbomyrisate acetate-induced chromosome breakage by antioxidants and inhibitors of arachidonic acid metabolism. Mutation Research 110, 327335.CrossRefGoogle ScholarPubMed
Fischer, S. M., Klein-Szanto, A. J., Adams, L. M. & Slaga, T. J. (1985). The first stage and complete promoting activity of retinoic acid but not the Analog RO-10-9359. Carcinogenesis 6, 575578.Google Scholar
Fontham, E. T. H., Pickle, L. W., Haenszel, W., Correa, P., Lin, Y. & Falk, R. T. (1988). Dietary vitamins A and C and lung cancer risk in Louisiana. Cancer 62, 22672273.3.0.CO;2-E>CrossRefGoogle Scholar
Freudenheim, Jo. L. & Marshall, J. R. (1988). The problem of profound mismeasurement and the power of epidemiological studies of diet and cancer. Nutrition and Cancer 11, 243250.CrossRefGoogle ScholarPubMed
Frisch, R. E., Wyshak, G. & Albright, N. L. (1985). Lower prevalence of breast cancer and cancers of the reproductive system among former college athletes compared to non-athletes. British Journal of Cancer 52, 885891.CrossRefGoogle ScholarPubMed
Funes, J., Yong, S. & Karel, M. (1980). Changes in lysozyme due to reactions with volatile products of peroxidizing methyl linoleate. Journal of Agricultural and Food Chemistry 28, 794798.CrossRefGoogle ScholarPubMed
Gabor, H., Hillyard, L. A. & Abraham, S. (1985). Effect of dietary fat on growth kinetics of transplantable mammary adenocarcinoma in Balb/C mice. Journal of the National Cancer Institute 74, 12991305.Google ScholarPubMed
Gensler, H. & Bowden, G. T. (1984). Influence of 13-cis-retinoic acid on mouse skin tumor initiation and promotion. Cancer Letters 22, 7175.CrossRefGoogle ScholarPubMed
Gey, K. F., Brubacher, G. B. & Stähelin, H. B. (1987). Plasma levels of antioxidant vitamins in relation to chronic heart disease and cancer. American Journal of Clinical Nutrition 45, 13681377.Google Scholar
Goodwin, W. J., Lane, H. W., Bradford, K., Marshall, M. V., Griffin, A. C., Geopfert, H. & Jesse, R. H. (1983). Selenium and glutathione peroxidase levels in patients with epidermoid carcinoma of the oral cavity and oropharynx. Cancer 51, 110115.Google Scholar
Graham, S., Haughey, B., Marshall, J., Priore, R., Byers, T., Rzepka, T., Mettlin, C. & Pontes, J. E. (1983). Diet in the epidemiology of carcinoma of the prostate gland. Journal National Cancer Institute 70, 786.Google Scholar
Graham, S., Marshall, J., Mettlin, C., Rzepka, T., Memto, T. & Byers, T. (1982). Diet in the epidemiology of breast cancer. American Journal of Epidemiology 116, 6875.CrossRefGoogle ScholarPubMed
Hagerty, M. A., Howie, B. J., Tan, S. & Shultz, T. D. (1988). Effect of low and high-fat intakes on the hormonal milieu of premenopausal women. American Journal of Clinical Nutrition 48, 653659.CrossRefGoogle Scholar
Helmrich, S. P., Shapiro, S. & Rosenberg, L. (1983). Risk factors for breast cancer. American Journal of Epidemiology 115, 241245.Google Scholar
Henderson, B. E., Ross, R. K., Pike, M. C. & Casagrande, J. T. (1982). Endogenous hormones as a major factor in human cancer. Cancer Research 42, 32323239.Google Scholar
Herschopf, R. J. & Bradlow, H. L. (1987). Obesity, diet, endogenous estrogens, and the risk of hormone-sensitive cancer. American Journal of Clinical Nutrition 45, 283289.Google Scholar
Hicks, R. M. (1983 a). Pathological and biochemical aspects of tumor promotion. Carcinogenesis 4, 12091214.Google Scholar
Hicks, R. M. (1983 b). The scientific basis for regarding vitamin A and its analogues as anticarcinogenic agents. Proceedings of the Nutrition Society 42, 83101.CrossRefGoogle Scholar
Hill, M. J. (1989). Experimental studies of fat, fibre and calories in carcinogeneses. In Diet and the Aetiology of Cancer. European School of Oncology Monographs, pp. 3138 [Miller, A. B., editor]. Heidelberg: Springer-Verlag.Google Scholar
Hill, P., Garbaczewski, L., Helman, P., Huskission, J., Sporangisa, E. & Wynder, E. L. (1980). Diet, lifestyle and menstrual activity. American Journal of Clinical Nutrition 33, 11,982–11,988.Google Scholar
Hillyard, L. A. & Abraham, S. (1979). Effect of dietary polyunsaturated fatty acids on growth of mammary adenocarcinoma in mice and rats. Cancer Research 39, 44304437.Google ScholarPubMed
Holm, L. E., Nordevang, E., Ikkala, E., Hallström, L. & Callmer, E. (1990). Dietary intervention as adjuvant therapy in breast cancer patients: a feasibility study. Breast Cancer Research. (In the Press.)Google Scholar
Hopkins, G. J. & Carroll, K. K. (1979). Relationship between amount and type of dietary fat in promotion of mammary carcinogenesis induced by 7,12-dimethylbenz(α)anthracene. Journal of the National Cancer Institute 62, 10091012.Google Scholar
Hopkins, G. J., Kennedy, T. G. & Carroll, K. K. (1981). Polyunsaturated fatty acids as promoters of mammary carcinogenesis induced in Sprague–Dawley rats by 7,12-dimethylbenzanthracene. Journal of the National Cancer Institute 66, 517522.Google Scholar
Horvath, P. M. & Ip, C. (1983). Synergistic effect of vitamin E and selenium in the chemoprevention of mammary carcinogenesis in rats. Cancer Research 43, 53355341.Google Scholar
Ingram, D., Nottage, E., Ng, S., Sparrow, L., Roberts, A. & Willcox, D. (1990). Obesity and breast disease: The role of the female sex hormones. Cancer (In the Press.)Google Scholar
Ip, C. (1987). Fat and essential fatty acid in mammary carcinogenesis. American Journal of Clinical Nutrition 45, 218224.CrossRefGoogle ScholarPubMed
Ip, C., Yip, P. & Bernadis, L. L. (1980). Role of prolactin in the promotion of diemthylbenzanthracene-induced mammary tumors by dietary fat. Cancer Research 40, 374378.Google Scholar
Ito, N. & Hirose, M. (1989). Antioxidants – carcinogenic and chemo-preventive properties. Advances in Cancer Research 53, 247302.CrossRefGoogle Scholar
Jaskiewicz, K., Marasas, W. F. O., Rossouw, J. E., van NiekerkF, E. & Heine, E. W. P. (1988). Selenium and other mineral elements in population at risk of esophageal cancer. Cancer 62, 26352639.Google Scholar
Jurkowski, J. J. & Cave, W. T. (1985). Dietary effects of menhaden oil on the growth and membrane lipid composition of rat mammary tumors. Journal of the National Cancer Institute 74, 11451150.Google ScholarPubMed
Karmali, R. A. (1987). Fatty acids: inhibition. American Journal of Clinical Nutrition 45, 225229.Google Scholar
Karmali, R. A., Marsh, J. & Fuchs, C. (1984). Effects of ω3 fatty acids on the growth of a rat mammary tumor. Journal of the National Cancer Institute 73, 457461.CrossRefGoogle ScholarPubMed
Kidwell, W. R., Knazeck, R. A., Vonderhaar, B. K. & Lasonczy, I. (1982). Effects of unsaturated fatty acids on the development and proliferation of normal and neoplastic breast epithelium. In Molecular Interactions of Nutrition and Cancer, pp. 219226 [Arnott, M. S., van Eyes, J. and Yang, Y., editors]. New York: Raven Press.Google Scholar
Kollmorgen, G. M., King, M. M., Kosanke, D. & Do, C. (1983). Influence of dietary fat and indomethacin on the growth of transplantable mammary tumors in rats. Cancer Research 43, 47144719.Google ScholarPubMed
Kollmorgen, G. M., Sansing, W. A., Lehman, A. A., Fischer, G., Longley, R. E., Alexander, S. S., King, M. M. & McCay, P. B. (1979). Institution of lymphocyte function in rats fed high-fat diets. Cancer Research 39, 34583462.Google Scholar
Kolonel, L. N., Hankin, J. H. & Yoshizawa, C. N. (1987). Vitamin A and prostate cancer risk in elderly men: enhancement of risk. Cancer Research 47, 29822985.Google ScholarPubMed
Kritchevskey, D., Weber, M. M. & Klurfield, D. M. (1984). Dietary fat versus calorie content in initiation and promotion of 7, 12-dimethylbenz(α)anthracene in mammary tumorigenesis in rats. Cancer Research 44, 31743177.Google Scholar
Kromhout, D. (1987). Essential micronutrients in relation to carcinogenesis. American Journal of Clinical Nutrition 45, 13611367.Google Scholar
Kvale, G., Bjelke, E. & Gart, J. J. (1983). Dietary habits and lung cancer risk. International Journal of Cancer 31, 397405.Google Scholar
Kyrtopoulos, S. A. (1987). Ascorbic acid and the formation of N-nitroso compounds: possible role of ascorbic acid in cancer prevention. American Journal of Clinical Nutrition 45, 13441350.Google Scholar
La Vecchia, C., Franceschi, S. & Gallus, G. (1982). Prognostic features of endometrial cancer in oestrogen users and obese women. American Journal of Obstetrics and Gynecology 144, 387390.CrossRefGoogle ScholarPubMed
Lai, C. S., Hopwood, L. E. & Swartz, H. M. (1980). Electron spin resonance studies of changes in membrane fluidity of Chinese hamster ovary cells during the cell cycle. Biochimica & Biphysica Acta 602, 117126.Google Scholar
Lasnitski, I. (1955). The influence of A hypervitaminosis on the effect of 20 methylcholanthrene on mouse prostate glands grown in vitro. British Journal of Cancer 9, 434441.CrossRefGoogle Scholar
Lew, E. A. & Garfinkel, L. (1979). Variations in mortality by weight among 750,000 men and women. Journal of Chronic Diseases 32, 563576.CrossRefGoogle Scholar
Louis, C. J. (1978). Tumours: Basic Principles and Clinical Aspects. Edinburgh: Churchill Livingstone.Google Scholar
Lubin, F., Ruder, A. M., Wax, Y. & Modan, B. (1985). Overweight and changes in weight throughout adult life in breast cancer aetiology. American Journal of Epidemiology 122, 579588.Google Scholar
Lubin, J. H., Burns, P. E., Blot, W. J., Ziegler, R. G., Lees, A. W. & Fraumeni, J. F. (1981). Dietary factors and breast cancer risk. International Journal of Cancer 28, 685691.Google Scholar
Lupulescu, A. P. (1984). Inhibition of DNA synthesis and cell proliferation in carcinomas by vitamin A (retinol). Journal of Cell Biology 99, 151a.Google Scholar
McTieman, A. M., Weiss, N. S. & Daling, J. R. (1984). Incidence of thyroid cancer in women in relation to previous exposure to radiation therapy and history of thyroid disease. Journal of the National Cancer Institute 73, 575581.Google Scholar
MahmoudL, A. N. & Robinson, W. A. (1982). Vitamin A levels in human bladder cancer. International Journal of Cancer 30, 143145.Google Scholar
Marchand, L. Le., Yoshizawa, C. N., Kolonel, L. N., Hankin, J. H. & Goodman, M. T. (1989). Vegetable consumption and lung cancer risk: A population-based case-control study in Hawaii. Journal of National Cancer Institute 81, 11581164.CrossRefGoogle Scholar
Marubini, E., Decarli, A., Costa, A., Mazzoleni, C., Andreoli, C., Barbieri, A., Capitelli, E., Carlucci, M., Cavallo, F., Monferroni, N., Pastorini, U. & Salvini, S. (1988). The relationship of dietary intake and serum levels of retinol and β-carotene with breast cancer. Results of a case-control study. Cancer 61, 173180.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Marx, J. L. (1983). Do tumor promoters affect DNA after all? Science 219, 158159.Google Scholar
Mellow, M. H., Layne, E. A., Lipman, T. O., Kaushik, M., Hostetler, C. & Smith, J. C. (1983). Plasma zinc and vitamin A in human squamous carcinoma of the esophagus. Cancer 51, 16151620.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Mettlin, C. & Graham, S. (1979). Dietary risk factors in human bladder cancer. American Journal of Epidemiology 110, 255263.CrossRefGoogle ScholarPubMed
Micozzi, M. S. (1985). Nutrition, body size and breast cancer. Yearbook of Physical Anthropology 28, 175206.CrossRefGoogle Scholar
Miller, A. B. (1985). Diet, nutrition and cancer: an epidemiological overview. Journal of Nutrition, Growth and Cancer 2, 159171.Google Scholar
Moon, R. C. (1986). Selected Abstracts on Retinoids, β-Carotene and Cancer. R. A. Block International Cancer Information Center, Bethesda, USA: National Cancer Institute.Google Scholar
Moore, J. W., Clarke, G. M. G., Bulbrook, R. D., Hayward, J. L., Hammond, G. L. & Siiteri, P. K. (1982). Serum concentrations of total and non protein bound oestradiol in patients with breast cancer and in normal controls. International Journal of Cancer 29, 1721.Google Scholar
Morrison, A. S., Lowe, C. R. & MacMahon, B. (1977). Incidence risk factors and survival in breast cancer: report on five years of follow-up observation. European Journal of Cancer 13, 209214.Google Scholar
MRFIT Research Groups (1982). Multiple Risk Factor Intervention Trial. Risk factor changes and mortality results. Journal of the American Medical Association 248, 14651477.Google Scholar
Murakoshi, M., Takayasu, J., Kimura, O., Kohmura, E., Nishino, H., Iwashima, A., Okuzumi, J., Sakai, T., Sugimoto, T., Imanishi, J. & Iwasaki, R. (1989). Inhibitor effects of α-carotene on proliferation of the human neuroblastoma cell line GOTO. Journal of National Cancer Institute 81, 16491652.Google Scholar
Nauss, K. M., Jacohs, L. R. & Newberne, P. M. (1987). Dietary fat and fiber: relationship to calorie intake body growth and colon tumorigenesis. American Journal of Clinical Nutrition 45, 243251.Google Scholar
Nielsen, N. H. & Hansen, J. P. H. (1980). Breast cancer in Greenland: selected epidemiological clinical and histological features. Journal of Cancer Research and Clinical Oncology 98, 287299.Google Scholar
Nishizuka, Y. (1984). Turnover of inositol phospholipids and signal transduction. Science 225, 13651370.Google Scholar
Ohno, Y., Yoshida, O., Oishi, K., Okada, K., Yamabe, H. & Schroeder, F. H. (1988). Dietary β-carotene and cancer of the prostate: a case-control study. Cancer 48, 13311336.Google ScholarPubMed
Ohuchi, K. & Levine, L. (1980). α-Tocopherol inhibits 12-0-tetradecanoyl-phorbol-13-acetate-stimulated deacylation of cellular lipids, prostaglandin production, and changes in cell morphology of Modin-Darby canine kidney cells. Biochimica et Biophysica Acta 619, 1119.Google Scholar
Oshima, M. & Ward, J. M. (1986). Dietary idodine deficiency as a tumor promoter and carcinogen in male F344/NCr rats. Cancer Research 46, 877883.Google Scholar
Olson, J. A. (1984). Serum levels of vitamin A and carotenoids as reflectors of nutritional status. Journal of the National Cancer Institute 73, 14391444.Google Scholar
Oza, R. P. & Karmali, R. A. (1986). Dietary effects of ω-3 fatty acids on the growth of R3230AC mammary tumor. Federation Proceedings 45, 1089 Abstr.Google Scholar
Paffenbarger, R. S. Jr, Kampert, J. B. & Chang, H. G. (1980). Characteristics that predict risk of breast cancer before and after the menopause. American Journal of Epidemiology 112, 163168.Google Scholar
Paganini-Hill, A., Chao, A., Ross, R. K. & Henderson, B. E. (1987). Vitamin A, β-carotene, and the risk of cancer: a prospective study. Journal of the National Cancer Institute 79, 443448.Google Scholar
Peto, R., Doll, R., Buckley, J. D. & Sporn, M. B. (1981). Can dietary β-carotene materially reduce human cancer rates? Nature 290, 201208.Google Scholar
Poirier, L. A. (1987). Stages in carcinogenesis: alteration by diet. American Journal of Clinical Nutrition 45, 185191.Google Scholar
Rogers, A. E. & Westel, W. C. (1981). Mammary carcinogenesis in rats fed different amounts and types of fat. Cancer Research 41, 37353737.Google Scholar
Rolland, P. H., Maretin, P. M., Rolland, A. M., Bourry, M. & Serment, H. (1979). Benign breast disease: studies of prostaglandin E2, steroids and the thermographic effects of inhibitors of prostaglandin biosynthesis. Obstetrics and Gynecology 54, 715719.Google ScholarPubMed
Rose, D. P., Boyar, A. P., Cohen, C. & Strong, L. E. (1987 a). Effect of a low-fat diet on serum hormone levels in women with cystic breast disease. II. Serum steroids and gonadotrophins. Journal of the National Cancer Institute 78, 623626.Google Scholar
Rose, D. P., Cohen, L. A., Berke, B. & Strong, L. E. (1987 b). Effect of a low-fat diet on serum hormone levels in women with cystic breast disease. II. Serum radioimmunoassayable prolactin and growth hormone and bioactive lactogenic hormones. Journal of the National Cancer Institute 78, 627631.Google ScholarPubMed
Rosen, P. P., Ashikari, R. & Thaler, H. (1977). A comparative study of some pathological features of mammary carcinoma in Tokyo, Japan and New York, USA. Cancer 39, 429434.Google Scholar
Ross, M. H. & Bras, G. (1971). Lasting influence of early caloric restriction on prevalence of neoplasms in the rat. Journal of the National Cancer Institute 47, 10951113.Google ScholarPubMed
Salonen, J. T., Salonen, R., Lappetelainen, R., Mmenpaa, P. H., Alfthan, G. & Puska, P. (1985). Risk of cancer in relation to serum concentrations of selenium and vitamins A and E: Matched use control analysis of prospective data. British Medical Journal 290, 417420.Google Scholar
Seifter, E., Rettura, G. & Levenson, S. M. (1984). Supplemental β-carotene (BC): Prophylactic action against 7,12 dimethylbenz(α)anthracene (DMBA) carcinogenesis. Federation Proceedings, Federation of American Societies of Experimental Biology 43, 662.Google Scholar
Shultz, T. D., Wilcox, R. B., Speuhler, J. M. & Howie, B. J. (1987). Dietary and hormonal interrelationships in premenopausal women: evidence for a relationship between dietary nutrients and plasma prolactin levels. American Journal of Clinical Nutrition 46, 905911.CrossRefGoogle ScholarPubMed
Sidell, N., Altman, P., Haussler, M. A. & Seeger, R. C. (1983). Effects of retinoic acid (RA) on the growth of phenotypic expressions of several human neuroblastoma cell lines. Experimental Cell Research 148, 2130.CrossRefGoogle ScholarPubMed
Sies, H. (1990). Antioxidant defense systems. Proceedings of the International Conference on Antioxidant Vitamins and β-Carotene in Disease Prevention. London: In the press.Google Scholar
Siiteri, P. K. (1987). Adipose tissue as a source of hormones. American Journal of Clinical Nutrition 45, 277282.Google Scholar
Simpson, E. R. & Mendelson, C. R. (1987). Effect of aging and obesity on aromatase activity of human adipose cell. American Journal of Clinical Nutrition 45, 290.Google Scholar
Soini, I. (1977). Risk factors of breast cancer in Finland. International Journal of Epidemiology 6, 365373.CrossRefGoogle ScholarPubMed
Sporn, M. B., Dunlop, N. M., Newton, D. L. & Smith, J. M. (1976). Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Federation Proceedings, Federation of American Societies of Experimental Biology 35, 13321338.Google ScholarPubMed
Sporn, M. B. & Roberts, A. B. (1984). Role of retinoids in differentiation and carcinogenesis. Journal of the National Cancer Institute 73, 13811387.Google Scholar
Stähelin, H. B. & Buess, E. (1982). Vitamin A and cardiovascular risk factors, and mortality. Lancet i, 394395.CrossRefGoogle Scholar
Stich, H. F., Rosin, M. & Vallejera, M. O. (1984 a). Reduction with vitamin A and β-carotene administration of proportion of micronucleated buccal mucosal cells in Asian betal nut and tobacco chewers. Lancet i, 12041206.Google Scholar
Stich, H. F., Stich, W., Rosin, M. P. & Vallejera, M. O. (1984 b). Use of the micronucleous test to monitor the effect of vitamin A, β-carotene and conthaxanthin on the buccal mucosa of betal nut/tobacco chewers. International Journal of Cancer 34, 745750.CrossRefGoogle Scholar
Toniolo, P., Riboli, E., Protta, F., Charrel, M. & Cappa, A. D. M. (1989). Calorie providing nutrients and risk of breast cancer. Journal of the National Cancer Institute 81, 278286.CrossRefGoogle ScholarPubMed
Tyler, H. A., Notley, R. G., Schweitzer, F. A. W. & Dickerson, J. W. T. (1986). Vitamin A status and bladder cancer, European Journal of Surgical Oncology 12, 3541.Google ScholarPubMed
Uriel, J. (1979). Retrodifferentiation and the fetal patterns of gene expression in cancer. Advances in Cancer Research 29, 127174.CrossRefGoogle ScholarPubMed
Verreault, R., Bresson, J., Deschenes, L., Nand, F., Meyer, F. & Belanger, L. (1988). Dietary fat in relation to prognostic indicators in breast cancer. Journal of the National Cancer Institute 80, 819825.Google Scholar
de Waard, F. (1975). Breast cancer incidence and nutritional status with particular reference to body weight and height. Cancer Research 35, 33513356.Google Scholar
Wagner, D. A., Naylor, P. H., Kim, U., Shea, W., Ip, C. & Margot, M. M. (1982). Interaction of dietary fat and the thymus in the induction of mammary tumors by 7,12-dimethylbenz(α)anthracene. Cancer Research 42, 12661273.Google Scholar
Wahrendorf, J. (1989). Dietary fat, dietary cholesterol and obesity as risk factors for colorectal cancer, kidney cancer and other tumors. In Diet and the Aetiology of Cancer. European School of Oncology Monographs, pp. 1319 [Miller, A. B., editor]. Heidelberg: Springer-Verlag.Google Scholar
Wahrendorf, J., Munoz, N., Jian-Bang, L., Thurnham, D. I., Grespi, M. & Bosch, F. X. (1988). Blood retinol and zinc riboflavin status in relation to precancerous lesions of the esophagus: findings from a vitamin interaction trial in the People's Republic of China. Cancer Research 48, 22802283.Google Scholar
Wald, N., Boreham, J. & Bailey, A. (1986). Serum retinol and subsequent risk of cancer. British Journal of Cancer 54, 957961.Google Scholar
Wald, N. J., Boreham, J., Hayward, J. L. & Bulbrook, R. D. (1984). Plasma retinol, β carotene and vitamin E levels in relation to future risk of breast cancer. British Journal of Cancer 49, 321324.Google Scholar
Walk, N., Idle, M., Boreham, J. & Bailey, A. (1980). Low serum vitamin A and subsequent risk of cancer. Preliminary results in a prospective study. Lancet ii, 813815.Google Scholar
Weinstein, I. B., Gattoni-Celli, S., Kirschmeier, P., Hsiao, W., Horowitz, A. & Jeffrey, A. (1984). Cellular targets and host genes in multi-stage carcinogenesis. Federation Proceedings 43, 22872294.Google Scholar
Welsch, C. W. (1985). Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Research 45, 34153443.Google Scholar
Welsch, C. W. (1986). Interrelationships between dietary fat and endocrine processes in mammary gland tumorigenesis. In Dietary Fat and Cancer, pp. 623654 [Rogers, A., Birt, D., Mettlin, E. and Ip, C., editors]. New York: Alan R. Liss Inc.Google Scholar
Welsch, C. W. (1987). Enhancement of mammary tumorigenesis by dietary fat: review of potential mechanisms. American Journal of Clinical Nutrition 45, 192202.CrossRefGoogle ScholarPubMed
Welsch, C. W. & Aylsworth, C. F. (1983). Enhancement of murine mammary tumorigenesis by feeding high levels of dietary fat: a hormonal mechanism? Journal of the National Cancer Institute 70, 215221.Google ScholarPubMed
Welsch, C. W., DeHoog, J. V., Scieszka, K. M. & Aylsworth, C. F. (1984). Retinoid feeding, hormone inhibition, and/or immune stimulation and the progression of N-methyl-N-nitrosourea-induced rat mammary carcinoma: suppression by retinoids of peptide hormone-induced tumor cell proliferation in vivo and in vitro. Cancer Research 44, 166171.Google Scholar
Welsch, C. W., DeHoog, J. V., O'Connor, D. H. & Sheffield, L. G. (1985). Influence of dietary fat levels on development and hormone responsiveness of the mouse mammary gland. Cancer Research 45, 147154.Google Scholar
Wetherall, N. T., Mitchell, W. M. & Halter, S. A. (1984). Antiproliferative effect of vitamin A on xenotransplanted CAMA-15 cells. Cancer Research 44, 23932397.Google Scholar
Wicha, M. S., Liotta, L. A. & Kidwell, W. R. (1979). Effects of free fatty acids on the growth of normal and neoplastic rat mammary epithelial cells. Cancer Research 39, 426435.Google ScholarPubMed
Willett, W. C. (1987). Implications of total energy intake for epidemiologic studies of breast and large bowel cancer. American Journal of Clinical Nutrition 45, 354360.CrossRefGoogle ScholarPubMed
Willett, W. C., Browne, M. L. & Bain, C. (1985). Relative weight and risk of breast cancer among premenopausal women. American Journal of Epidemiology 122, 731740.CrossRefGoogle ScholarPubMed
Williams, C. M. & Dickerson, J. W. T. (1987). Dietary fat, hormones and breast cancer: the cell membrane as a possible site of interaction of these two risk factors. European Journal of Surgical Oncology 13, 89104.Google ScholarPubMed
Williams, C. M. & Maunder, K. (1990). Comparative effects of ω9, ω6 and ω3 dietary fatty acids on mammary tumor incidence and membrane phospholipid fatty acid compositions. Biochemistry Society Transactions. (In the Press).Google Scholar
Williams, C. M., Maunder, K. & Theale, D. (1989). The effect of a low-fat diet on luteal phase prolactin and oestradiol concentrations and erythrocyte phospholipids in normal premenopausal women. British Journal of Nutrition 61, 651661.CrossRefGoogle ScholarPubMed
Wolbach, S. B. & Howe, P. R. (1925). Tissue changes following deprivation of fat soluble vitamin A. Journal of Experimental Medicine 47, 753777.CrossRefGoogle Scholar
Wu, A. H., Henderson, B. E., Pike, M. E. & Yu, M. C. (1985). Smoking and other risk factors for lung cancer in women. Journal of the National Cancer Institute 74, 747751.Google Scholar
You, W.-C., Blot, W. J., ChangY,-S. Y,-S., Ershow, A., Tang, Z. T., An, Q., Henderson, B. E., Fraumeni, J. F. & Wang, T.-G. (1989). Allium vegetables and reduced risk of stomach cancer. Journal of Nutrition Cancer Institute 81, 162164.CrossRefGoogle ScholarPubMed
Ziegler, R. G., Mason, T. J., Stemhagen, A., Hoover, R., Schoenberg, J. B., Gridley, G., Virgo, P. W., Altmans, R. & Fraumeni, J. F. (1984). Dietary carotene and vitamin A and risk of lung cancer among white men in New Jersey. Journal of the National Cancer Institute 73, 14291435.Google Scholar