Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T17:20:44.877Z Has data issue: false hasContentIssue false

Molecular Biology of Intestinal Glucose Transport

Published online by Cambridge University Press:  14 December 2007

Soraya P. Shirazi-Beechey
Affiliation:
Epithelial Function and Development Group, Institute of Biological Sciences, University of Wales, Aberystwyth, Dyfed, SY23 3DD, UK
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1995

References

1Attaix, D. & Meslin, J.-C. (1991). Changes in small intestinal mucosa morphology and cell renewal in suckling, prolonged-suckling, and weaned lambs. American Journal of Physiology 261, R811–R818.Google ScholarPubMed
2Baldwin, S. A. (1993). Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochimica et Biophysica Acta 1154, 1749.CrossRefGoogle ScholarPubMed
3Bassett, J. M. (1975). Dietary and gastro-intestinal control of hormones regulating carbohydrate metabolism in ruminants. In Digestion and Metabolism in the Ruminant (International Symposium on Ruminant Physiology 4, 1974), pp. 383398 [ I. W., McDonald & A. C. I., Warner, editors]. Armidale, NSW, Australia: University of New England Publishing Unit.Google Scholar
4Buddington, R. K. & Diamond, J. M. (1989). Ontogenetic development of intestinal nutrient transporters. Annual Review of Physiology 51, 601619.CrossRefGoogle ScholarPubMed
5Burant, C. F., Takeda, J., Brot-Laroche, E., Bell, G. I. & Davidson, N. O. (1992). Fructose transporter in human spermatozoa and small intestine is GLUT 5: Journal of Biological Chemistry 267, 1452314526.CrossRefGoogle Scholar
6Cheng, H. & Leblond, C. P. (1974). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. American Journal of Anatomy 141, 461480.CrossRefGoogle ScholarPubMed
7Coady, M. J., Pajor, A. M. & Wright, E. M. (1990). Sequence homologies among intestinal and renal Na+/glucose cotransporters. American Journal of Physiology 259, C605–C610.CrossRefGoogle ScholarPubMed
8Davidson, N. O., Hausman, A. M. L., Ifkovits, C. A., Buse, J. B., Gould, G. W., Burant, C. F. & Bell, G. I. (1992). Human intestinal glucose transporter expression and localization of GLUTS. American Journal of Physiology 262, C795C800.CrossRefGoogle Scholar
9Diamond, J. M. & Karasov, W. H. (1984). Effect of dietary carbohydrate on monosaccharide uptake by mouse small intestine in vitro. Journal of Physiology 349, 419440.CrossRefGoogle ScholarPubMed
10Diamond, J. M. & Karasov, W. H. (1987). Adaptive regulation of intestinal nutrient transporters. Proceedings of the National Academy of Sciences of the USA 84, 22422245.CrossRefGoogle ScholarPubMed
11Dyer, J., Scott, D., Beechey, R. B., Care, A. D., Abbas, K. S. & Shirazi-Beechey, S. P. (1994). Dietary regulation of intestinal glucose transport. In Mammalian Brush-border Membrane Proteins, Part II, pp. 6572 [ M. J. Lentze, R.J., Grand and H. Y., Naim, editors]. Stuttgart: Thieme Verlag.Google Scholar
12Ferraris, R. P. (1994). Regulation of intestinal nutrient transport. In Physiology of the Gastrointestinal Tract, 3rd edn, pp. 18211844 [ L. R., Johnson, editor]. New York: Raven Press.Google Scholar
13Ferraris, R. P. & Diamond, J. M. (1986). A method for measuring apical glucose transporter site density in intact intestinal mucosa by means of phlorizin binding. Journal of Membrane Biology 94, 6575.Google Scholar
14Ferraris, R. P. & Diamond, J. M. (1989). Specific regulation of intestinal nutrient transporters by their dietary substrates. Annual Review of Physiology 51, 125141.CrossRefGoogle ScholarPubMed
15Ferraris, R. P. & Diamond, J. M. (1993). Crypt–villus site of substrate-dependent regulation of mouse intestinal glucose transporters. Proceedings of the National Academy of Sciences of the USA 90, 58685872.Google Scholar
16Ferraris, R. P., Villenas, S. A., Hirayama, B. A. & Diamond, J. (1992). Effect of diet on glucose transporter site density along the intestinal crypt/villus axis. American Journal of Physiology 262, G1060–G1068.Google ScholarPubMed
17Ferraris, R. P., Yasharpour, S., Lloyd, K. C. K., Mirzayan, R. & Diamond, J. M. (1990). Luminal glucose concentrations in the gut under normal conditions. American Journal of Physiology 259, G822–G837.Google ScholarPubMed
18Freeman, T. C., Wood., I. S., Sirinathsinghji, D. J. S., Beechey, R. B., Dyer, J. & Shirazi-Beechey, S. P. (1993). The expression of the Na+/glucose cotransporter (SGLTI) gene in lamb small intestine during postnatal development. Biochimica et Biophysica Acta 1146, 203212.Google Scholar
19Gould, G. W. & Holman, G. D. (1993). The glucose transporter family: structure, function and tissue-specific expression. Biochemical Journal 295, 329341.CrossRefGoogle ScholarPubMed
20Hahn, P. & Koldovský, O. (1966). Utilization of Nutrients during Postnatal Development. Oxford: Pergamon Press.Google Scholar
21Hediger, M. A., Coady, M. J., Ikeda, T. S. & Wright, E. M. (1987). Expression cloning and cDNA sequencing of the Na+-glucose co-transporter. Nature 330, 379381.Google Scholar
22Hediger, M. A., Turk, E. & Wright, E. M. (1989). Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proceedings of the National Academy of Sciences of the USA 86, 5748–4752.CrossRefGoogle ScholarPubMed
23Hirayama, B. A., Wong, H. C., Smith, C. D., Hagenbuch, B. A., Hediger, M. A. & Wright, E. M. (1991). Intestinal and renal Na+-glucose cotransporters share common structures. American Journal of Physiology 261, C296–C304.CrossRefGoogle ScholarPubMed
24Hirayama, B. A. & Wright, E. M. (1991). Glycosylation of the rabbit intestinal brush border Na+-glucose cotransporter. Biochimica et Biophysica Acta 1103, 3744.CrossRefGoogle Scholar
25Hopfer, U. (1987). Membrane transport mechanisms for hexoses and amino acids in the small intestine. In Physiology of the Gastrointestinal Tract., 2nd edn, vol. 2, pp. 14991526 [ L. R., Johnson, editor]. New York: Raven Press.Google Scholar
26Hwang, E.-S., Hirayama, B. A. & Wright, E. M. (1991). Distribution of the SGLTI Na+/glucose cotransporter and mRNA along the crypt–villus axis of rabbit small intestine. Biochemical and Biophysical Research Communications 181, 12081217.Google Scholar
27James, D. E. (1995). The mammalian facilitative glucose transporter family. News in Physiological Sciences 10, 6770.Google Scholar
28Karasov, W. H. & Diamond, J. M. (1982). Effects of dietary carbohydrate on intestinal glucose transport in mice. Physiologist 25, 241.Google Scholar
29Karasov, W. H. & Diamond, J. M. (1987). Adaptation of intestinal nutrient transport. In Physiology of the Gastrointestinal Tract, 2nd edn, vol. 2, pp. 14891497 [ L. R., Johnson, editor]. New York: Raven Press.Google Scholar
30Kayano, T., Burant, C. F., Fukumoto, H., Gould, G. W., Fan, Y.-S., Eddy, R. L., Byers, M. G., Shows, T. B., Seino, S. & Bell, G. I. (1990). Human facilitative glucose transporters. Isolation, functional characterization and gene localization of cDNAs encoding an isoform (GLUTS) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). Journal of Biological Chemistry 265, 1327613282.CrossRefGoogle Scholar
31Lee, W.-S., Kanai, Y., Wells, R. G. & Hediger, M. A. (1994). The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression. Journal of Biological Chemistry 268, 1203212039.CrossRefGoogle Scholar
32Lescale-Matys, L., Dyer, J., Scott, D., Freeman, T. C., Wright, E. M. & Shirazi-Beechey, S. P. (1993). Regulation of the ovine intestinal Na+/glucose co-transporter (SGLTI) is dissociated from mRNA abundance. Biochemical Journal 291, 435440.CrossRefGoogle Scholar
33Miyamoto, K., Hase, K., Takagi, T., Fujii, T., Taketani, Y., Minami, H., Oka, T. & Nakabou, Y. (1993). Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars. Biochemical Journal 295, 211215.CrossRefGoogle ScholarPubMed
34Mueckler, M. (1994). Facilitative glucose transporters. European Journal of Biochemistry 219, 713725.Google Scholar
35Pajor, A. M., Hirayama, B. A. & Wright, E. M. (1992). Molecular biology approaches to comparative study of Na+-glucose cotransport. American Journal of Physiology 263, R489–R495.Google ScholarPubMed
36Scharrer, E., Liebich, H-G., Raab, W. & Promberger, N. (1979). Influence of age and rumen development on intestinal absorption of galactose and glucose in lambs. Functional and morphological study. Zentralblatt für Veterinärmedizin, Reihe A 26, 95105.Google Scholar
37Semenza, G., Kessler, M., Hosang, M., Weber, J. & Schmidt, U. (1984). Biochemistry of the Na+, D-glucose cotransporter of the small-intestinal brush-border membrane. The state of the art in 1984. Biochimica et Biophysica Acta 779, 343379.Google Scholar
38Shirazi-Beechey, S. P., Gribble, S. M., Wood, I. S., Tarpey, P. S., Beechey, R. B., Dyer, J., Scott, D. & Barker, P. J. (1994). Dietary regulation of the intestinal sodium-dependent glucose cotransporter (SGLTI). Biochemical Society Transactions 22, 655658.CrossRefGoogle Scholar
39Shirazi-Beechey, S. P., Hirayama, B. A., Wang, Y., Scott, D., Smith, M. W. & Wright, E. M. (1991). Ontogenic development of lamb intestinal sodium-glucose cotransporter is regulated by diet. Journal of Physiology 437, 699708.CrossRefGoogle ScholarPubMed
40Shirazi-Beechey, S. P., Kemp, R. B., Dyer, J, & Beechey, R. B. (1989). Changes in the functions of the intestinal brush border membrane during the development of the ruminant habit in lambs. Comparative Biochemistry and Physiology 94B, 801806.Google Scholar
41Shirazi-Beechey, S. P., Wood, I. S., Dyer, J., Scott, D. & King, T. P. (1995). Intestinal sugar transport in ruminants. In Ruminant Physiology: Digestion, Metabolism, Growth and Production, pp. 115132 [ W. V., Engelhardt, editor]. Stuttgart: Enke-Verlag.Google Scholar
42Smith, M. W., Turvey, A. & Freeman, T. C. (1992). Appearance of phloridzin-sensitive glucose transport is not controlled at mRNA level in rabbit jejunal enterocytes. Experimental Physiology 77, 525528.CrossRefGoogle Scholar
43Solberg, D. H. & Diamond, J. M. (1987). Comparison of different dietary sugars as inducers of intestinal sugar transporters. American Journal of Physiology 252, G574–G584.Google Scholar
44Takata, K., Kasahara, T., Kasahara, M., Ezaki, O. & Hirano, H. (1992). Immunohistochemical localization of Na+-dependent glucose transporter in rat jejunum. Cell and Tissue Research 267, 39.CrossRefGoogle ScholarPubMed
45Tarpey, P. S., Shirazi-Beechey, S. P. & Beechey, R. B. (1994). Molecular characterisation of the Na+/glucose co-transporter from the sheep parotid gland acinar cell. Biochemical Society Transactions 22, S264.CrossRefGoogle ScholarPubMed
46Tarpey, P. S., Wood, I. S., Shirazi-Beechey, S. P. & Beechey, R. B.Amino acid sequence and the cellular location of the Na+-dependent D-glucose symporters (SGLTI) in the ovine enterocyte and the parotid acinar cell. Biochemical Journal In the press.Google Scholar
47Thorens, B. (1993). Facilitated glucose transporters in epithelial cells. Annual Review of Physiology 55, 591608.CrossRefGoogle ScholarPubMed
48Traber, P. G. (1990). Regulation of sucrase-isomaltase gene expression along the crypt–villus axis of rat small intestine. Biochemical and Biophysical Research Communications 173, 765773.CrossRefGoogle ScholarPubMed
49Turk, E., Zabel, B., Mundlos, S., Dyer, J. & Wright, E. M. (1991). Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature 350, 354356.CrossRefGoogle ScholarPubMed
50Vazquez, C. M., Wood, I. S., Dyer, J., Planas, J. M., Ilundain, A. & Shirazi-Beechey, S. P. (1993). Regulation of sugar transport in chicken enterocytes. Biochemical Society Transactions. 21, 479S.Google Scholar
51Waddell, I. D., Zomerschoe, A. G., Voice, M. W. & Burchell, A. (1992). Cloning and expression of a hepatic microsomal glucose transport protein. Comparison with liver plasma-membrane glucose transport protein GLUT 2. Biochemical Journal 286, 173177.Google Scholar
52Wood, I. S., Scott, D., Beechey, R. B. & Shirazi-Beechey, S. P. (1994). Cloning and sequencing of the ovine intestinal Na+/glucose transporter (SGLTI). Biochemical Society Transactions. 22, 266S.CrossRefGoogle Scholar
53Wright, E. M., Hirayama, B. A., Loo, D. D. F., Turk, E. & Hager, K. (1994). Intestinal sugar transport. In Physiology of the Gastrointestinal Tract, 3rd edn, pp. 1751–1 772 [ L. R, Johnson, editor]. New York: Raven Press.Google Scholar