Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T23:34:20.910Z Has data issue: false hasContentIssue false

Methods for Studying Mineral and Trace Element Absorption in Humans Using Stable Isotopes*

Published online by Cambridge University Press:  14 December 2007

B. Sandström
Affiliation:
Reseach Department of Human Nutrition, Royal Veterinary and Agricultural University, Rolighedsvej 25, DK-1958 Frederiksberg C, Denmark
S. Fairweather-Tait
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, Norwich NR4 7UA, England
R. Hurrell
Affiliation:
Nestec Ltd, Nestlé Research Centre, CH-1000 Lausanne 26, Switzerland
W. van Dokkum
Affiliation:
TNO Nutrition and Food Research, PO Box 360, NL-3700 AJ Zeist, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Abrams, S. A., Esteban, N. V., Vieira, N. E., Sidbury, J. B., Specker, B. L. & Yergey, A. L. (1992). Developmental changes in calcium kinetics in children assessed using stable isotopes. Journal of Bone and Mineral Research 7, 287293.CrossRefGoogle ScholarPubMed
Arvidsson, B., Cederblad, Å., Bjöon-Rasmussen, E. & Sandström, B. (1978). A radionuclide technique for studies of zinc absorption in man. International Journal of Nuclear Medicine and Biology 5, 104109.CrossRefGoogle ScholarPubMed
Aubert, J.-P., Bronner, F. & Richelle, L. J. (1963). Quantitation of calcium metabolism. Theory. Journal of Clinical Investigation 42, 885897.CrossRefGoogle ScholarPubMed
August, D., Janghorbani, M. & Young, V. R. (1989). Determination of zinc and copper absorption at three dietary Zn-Cu ratios by using stable isotope methods in young adult and elderly subjects. American Journal of Clinical Nutrition 50, 14571463.CrossRefGoogle ScholarPubMed
Barrett, J. F. R., Whittaker, P. G., Williams, J. G. & Lind, T. (1992). Absorption of non-haem iron in normal women-measured by the incorporation of two stable isotopes into erythrocytes. Clinical Science 83, 213219CrossRefGoogle ScholarPubMed
Birge, S. J., Peck, W. A., Berman, M. & Whedon, G. D. (1969). Study of calcium absorption in man: a kinetic analysis and physiologic model. Journal of Clinical Investigation 48, 17051713.CrossRefGoogle Scholar
Bronner, F. (1962). Experimental studies of calcium absorption in man. Bibliotheca 'Nutritio et Dieta' 3, 2231.Google Scholar
Christensen, M. J., Janghorbani, M., Steinke, F. H., Istfan, N. & Young, V. R. (1983). Simultaneous determination of absorption of selenium from the poultry meat and selenite in young men: application of a triple stable-isotope method. British Journal of Nutrition 50, 4350.CrossRefGoogle ScholarPubMed
Cobelli, C., Toffolo, G., Bier, D. M. & Nosadini, R. (1987). Models to interpret kinetic data in stable isotope tracer studies. American Journal of Physiology 253, E551E564.Google ScholarPubMed
Davidsson, L., Cederblad, Å., Lönnerdal, B. & Sandström, B. (1989). Manganese retention in man: a method for estimating manganese absorption in man. American Journal of Clinical Nutrition 49, 170179.CrossRefGoogle Scholar
DeGrazia, J. A., Ivanovich, P., Fellows, H. & Rich, C. (1965). A double isotope method for measurement of intestinal absorption of calcium in man. Journal of Laboratory and Clinical Medicine 66, 822829.Google ScholarPubMed
DeLaeter, J. R., Heumann, K. G. & Rosman, K. J. R. (1991). Isotopic composition of the elements 1989. Journal of Physical and Chemical Reference Data 20, 13271337.CrossRefGoogle Scholar
Eagles, J., Fairweather-Tait, S. J., Portwood, D. E., Self, R., Götz, A. & Heumann, K. G. (1989). Comparison of fast atom bombardment mass spectrometry and thermal ionization quadrupole mass spectrometry for the measurement of zinc absorption in human nutrition studies. Analytical Chemistry 61, 10231025.CrossRefGoogle ScholarPubMed
Egan, C. B., Smith, F. G., Houk, R. S. & Serfass, R. E. (1991). Zinc absorption in women: comparison of intrinsic and extrinsic stable-isotope labels. American Journal of clinical Nutrition 53, 547553.CrossRefGoogle ScholarPubMed
Ehrenkranz, R. A., Gettner, P. A., Nelli, C. M., Sherwonit, E. A., Williams, P. A., Ting, B. T. G. & Janghorbani, M. (1989). Zinc and copper nutritional studies in very low birth weight infants: comparison of stable isotopic extrinsic tag and chemical balance methods. Pediatric Research 26, 298307.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Balmar, S. E., Scott, P. H. & Minski, M. J. (1987 a). Lactoferrin and iron absorption in newborn infants. Pediatric Research 22, 651654.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Fox, T. E., Wharf, S. G., Eagles, J., Crews, H. M. & Massey, R. (1991). Apparent zinc absorption by rats from food labelled intrinsically and extrinsically with 67Zn. British Journal of Nutrition 66, 6571.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Fox, T. E., Wharf, S. G., Eagles, J., & Kennedy, H. (1992). Zinc absorption in adult men from a chicken sandwich made with white of wholemeal bread, measured by a double-label stable-isotope technique. British Journal of Nutrition 67, 411419.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Jackson, M. J., Fox, T. E., Wharf, S. G., Eagles, J. & Croghan, P. C. (1993). The measurement of exchangeable pools of zinc using the stable istope 70Zn. British Journal of Nutrition 70, 221234.CrossRefGoogle Scholar
Fairweather-Tait, S. J., Johnson, A., Eagles, J., Ganatra, S., Kennedy, H. & Gurr, M. I. (1989 a). Studies on calcium absorption from milk using a double-label stable istope technique. British Journal of Nutrition 62, 379388.CrossRefGoogle Scholar
Fairweather-Tait, S. J., Minski, M. J. & Richardson, D. P. (1983). Iron absorption from a malted cocoa drink fortified with ferric orthophosphate using the stable isotope 58Fe as an extrinsic label. British Journal of Nutrition 50, 5160.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Minski, M. J. & Singh, J. (1987 b). Nonradiosotopic method for measuring iron absorption from a Gambian meal. American Journal of Clinical Nutrition 46, 844848.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Portwood, D. E., Symss, L. L., Eagles, J., & Minski, M. J. (1989 b). Iron and zinc absorption in human subjectsfrom a mixed meal of extruded and nonextruded wheat bran and flour. American Journal of Clinical Nutrition 49, 151155.CrossRefGoogle Scholar
Fomon, S. J., Janghorbani, M., Ting, B. T. G., Ziegler, E. E.Rogers, R. R., Nelson, S. E., Ostedgaard, L. S. & Edwards, B. B. (1988). Erythrocyte incorporation of ingested 58-iron by infants. Pediatric Research 24, 2024.CrossRefGoogle ScholarPubMed
Fomon, S. J., Ziegler, E. E., Rogers, R. R., Nelson, S. E., Edwards, B. B., Guy, D. G., Erve, J. C. & Janghorbani, M. (1989). Iron absorption from infant foods. Pediatric Research 26, 250254.CrossRefGoogle ScholarPubMed
Friel, J. K., Naake, V. L., Miller, L. V., Fennessey, P. V. & Hambidge, K. M. (1992). The analysis of stable isotopes in urine to determine the fractional absorption of zinc. American Journal of Clinical Nutrition 55, 473477.CrossRefGoogle ScholarPubMed
Garner, R. J., Jones, H. G. & Sansom, B. F. (1960). Fission products and the dairy cow. 2. Some aspects of the metabolism of the alkaline-earth elements calcium, strontium and barium. Biochemical Journal 76, 572579.CrossRefGoogle Scholar
Gibaldi, M. & Perrier, D. (1982). Pharmacokinetics, 2nd edn (Drugs and the Pharamaceutical Sciences Vol. 15) New York: Marcel Dekker.Google Scholar
Gibson, R. S., Gibson, I. L., Webber, C. E. & Atkinson, S. A. (1988). An improved multi-element measurement of mineral absorption in the piglet utilizing the fecal monitoring technique. Biological Trace Element Research 17, 139149.CrossRefGoogle ScholarPubMed
Hallberg, L. (1981). Bioavailability of dietary iron in man. Annual Review of Nutrition 1, 123147.CrossRefGoogle ScholarPubMed
Heumann, K. G. & Rädlein, N. (1989). Negative thermal ionization mass spectrometry of selenium. 3. Selenium trace determination in food samples. Fresenius' Zeitshrift für Analytische Chemie 335, 751754.CrossRefGoogle Scholar
Hillman, L. S., Tack, E., Covell, D. G., Vieira, N. E. & Yergey, A. L. (1988). Measurement of true calcium absorption in premature infants using intravenous 46Ca and oral 44Ca. Pediatric Research 23, 589594.CrossRefGoogle ScholarPubMed
Hosain, F., Marsaglia, G. & Finch, C. A. (1967). Blood ferrokinetics in normal man. Journal of Clinical Investigation 46, 19.CrossRefGoogle ScholarPubMed
Istfan, N. W., Janghorbani, M. & Young, V. R. (1983). Absorption of stable 70Zn in healthy young men in relation to zinc intake. American Journal of Clinical Nutrition 38, 187194.CrossRefGoogle Scholar
Jackson, M. J., Giugliano, R., Giguliano, L. G., Oliveira, E. F., Shrimpton, R. & Swainbank, I. G. (1988). Stable isotope metabolic studies of zinc nutrition in slum-dwelling lactating women in the Amazon valley. British Journal of Nutrition 59, 193203.CrossRefGoogle ScholarPubMed
Jackson, M. J., Jones, D. A., Edwards, R. H. T., Swainbank, I. G. & Coleman, M. L. (1984). Zinc homeostasis in man: studies using a new stable isotope-dilution technique. British Journal of Nutrition 51, 199208.CrossRefGoogle ScholarPubMed
Janghorbani, M., Christensen, M. J., Nahapetian, A. & Young, V. R. (1982 a). Selenium metabolism in healthy adults: quantitative aspects using the stable isotope. American Journal of Clinical Nutrition 35, 647654.CrossRefGoogle ScholarPubMed
Janghorbani, M., Istfan, N. W., Pagounes, J. O., Steinke, F. H. & Young, V. R. (1982 b). Absorption of dietary zinc in man: comparison of intrinsic and extrinsic labels using a triple stable isotope method. American Journal of Clinical Nutrition 36, 537545.CrossRefGoogle ScholarPubMed
Janghorbani, M., Martin, R. F., Kasper, L. J., Sun, X. F. & Young, V. R. (1990). The selenite-exchangeable metabolic pool in humans: a new concept for the assessment of selenium status. American journal of Clinical Nutrition 51, 670677.CrossRefGoogle ScholarPubMed
Janghorbani, M., Ting, B. T. & Fomon, S. J. (1986). Erythrocyte incorporation of ingested stable isotope of iron (58Fe). American Journal of Hematology 21, 277288.CrossRefGoogle ScholarPubMed
Janghorbani, M., Ting, B. T. G., Istfan, N. W. & Young, V. R. (1981 a). Measurements of 88Zn and 70Zn in human blood in reference to the study of zinc metabolism. American Journal of Clinical Nutrition 34, 581591.CrossRefGoogle Scholar
Janghorbani, M., Ting, B. T. G. & Young, V. R. (1980). Accurate analysis of stable isotopes 88Zn, 70Zn, and 58Fe in human feces with neutron activation analysis. Clinical Chimica Acta 108, 924.CrossRefGoogle ScholarPubMed
Janghorbani, M., Ting, B. T. G., Young, V. R. & Steinke, F. H. (1981 b). Intrinsic labelling of chicken meat with stable isotopes of zinc, for intended use in human feeding studies: feasibility and design considerations. British Journal of Nutrition 46, 395402.CrossRefGoogle ScholarPubMed
Janghorbani, M., Weaver, C. M., Ting, B. T. G. & Young, V. R. (1983). Labeling of soybeans with the stable isotope 70Zn for use in human metabolic studies. Journal of Nutrition 113, 973978.CrossRefGoogle ScholarPubMed
Janghorbani, M. & Young, V. R. (1982). Stable isotopes in studies of dietary mineral bioavailability in humans, with special reference to zinc. In Clinical Biochemical, and Nutritional Aspects of Trace Elements (Current topics in Nutrition and Disease Vol. 6), pp. 447468 [Prasad, A., editor.] New York: Alan R. Liss.Google Scholar
Janghorbani, M., Young, V. R., Gramlich, J. W. & Machlan, L. A. (1981 c). Comparative measurements of zinc-70 enrichment in human plasma samples with neutron activation and mass spectrometry. Clinica Chimica Acta 114, 163171.CrossRefGoogle ScholarPubMed
Johnson, P. E. (1982). A mass spectrometric method for use of stable isotopes as tracers in studies of iron, zinc, and copper absorption in human subjects. Journal of Nutrition 112, 14141424.CrossRefGoogle ScholarPubMed
Johnson, P. E., Stuart, M. A., Hunt, J. R., Mullen, L. & Starks, T. L. (1988). 85Copper absorption by women fed intrinsically and extrinsically labeled goose meat, goose liver, peanut butter and sunflower butter. Journal of Nutrition 118, 15221528.CrossRefGoogle ScholarPubMed
Kastenmayer, P.Davidsson, L., Galan, P., Cherouvrier, F., Hercberg, S. & Hurrell, R. F. (1993). Iron absorption in infants measured by a double stable isotope technique. British Journal of Nutrition. In press.Google Scholar
King, J. C., Raynolds, W. L. & Margen, S. (1978). Absorption of stable isotopes of iron, copper, and zinc during oral contraceptive use. American Journal of Clinical Nutrition 31, 11981203.CrossRefGoogle Scholar
Lehmann, W. D. & Kessler, M. (1982). Calcium absorption studies in man by stable isotope dilution and field desorption mass spectrometry. In Stable Isotopes (Analytical Chemistry Symposium Series Vol. 11). pp. 649654 [Schmidt, H.-L., Forstel, H. and Heinzinger, K., editors]. Amsterdam: Elsevier.Google Scholar
Liu, Y.-M., Neal, P., Ernst, J., Weaver, C., Rickard, K., Smith, D. L. & Lemons, J, (1989). Absorption of calcium and magnesium from fortified human milk by very low birth weight infants. Pediatric Research 25, 496502.CrossRefGoogle ScholarPubMed
Lowe, N. M., Green, A., Rhodes, J. M., Lombard, M., Jalan, R. & Jackson, M. J. (1993). Studies of human zinc kinetics using the stable isotope 70Zinc. Clinical Science 84, 113117.CrossRefGoogle Scholar
Mangels, A. R., Moser-Veillon, P. B., Patterson, K. Y. & Veillon, C. (1990). Selenium utilization during human lactation by use of stable-isotope tracers. American Journal of Clinical Nutrition 52, 621627.CrossRefGoogle ScholarPubMed
Martin, B. R., Weaver, C. M. & Smith, D. L. (1989). Calcium absorption from milk vs. calcium carbonate in college age women using stable isotopes. FASEB Journal 3, A771 (abstr. 3160).Google Scholar
Martin, R. F., Janghorbani, M. & Young, V. R. (1988). Kinetics of a single administration of 74Se-selenite by oral and intravenous routes in adult humans. Journal of Parenteral and Enteral Nutrition 12, 351355.CrossRefGoogle ScholarPubMed
Mason, P. M., Judd, P. A., Fairweather-Tait, S. J., Eagles, J. & Minski, M. J. (1990). The effect of moderately increased intakes of complex carbohydrates (cereals, vegetables and fruit) for 12 weeks on iron and zinc metabolism. British Journal of Nutrition 63, 597611.CrossRefGoogle ScholarPubMed
Miller, J. Z., Smith, D. L., Flora, L., Peacock, M. & Johnston, C. C. (1989). Calcium absorption in children estimated from single and double stable calcium isotope techniques. Clinica Chimica Acta 183, 107113.CrossRefGoogle ScholarPubMed
Miller, J. Z., Smith, D. L., Flora, L., Slemenda, C., Jiang, X. & Johnston, C. C. (1988). Calcium absorption from calcium carbonate and a new form of calcium (CCM) in healthy male and female adolescents. American Journal of Clinical Nutrition 48, 12911294.CrossRefGoogle Scholar
Molokhia, M, Sturniolo, G., Shields, R. & Turnberg, L. A. (1980). A simple method for measuring zinc absorption in man using a short-lived isotope (69mZu). American Journal of Clinical Nutrition 33, 881886.CrossRefGoogle Scholar
Moser-Veillon, P. B., Vieira, N. E., Yergey, A. L., Nagey, D. A., Patterson, K. Y. & Veillon, C. (1989). Fractional absorption and urinary excretion of calcium (Ca) stable isotopes in lactating and nonlactating women. FASEB Journal 3, A645 (Abstr. 2433).Google Scholar
Neer, R., Tully, G., Schatz, P. & Hnatowich, D. J. (1978). Use of stable 48Ca in the clinical measurement of intestinal calcium absorption. Calcified Tissue Research 26, 511.CrossRefGoogle ScholarPubMed
Patterson, B. H., Levander, O. A., Helzlsouer, K., McAdam, P. A., Lewis, S. A., Taylor, P. R., Veillon, C. & Zech, L. A. (1989). Human selenite metabolism: a kinetic model. American Journal of Physiology 257, R556R567.Google ScholarPubMed
Price, R. I., Kent, G. N., Rosman, K. J. B., Gutteridge, D. H., Reeve, J., Allen, J. P., Stuckey, B. G. A., Smith, M., Guelfi, G., Hickling, C. J. & Blakeman, S. L. (1990). Kinetics of intestinal calcium absorption in humans measured using stable isotopes and high-precision thermal lonization mass spectrometry. Biomedical and Environmental Mass Spectrometry 19, 353359.CrossRefGoogle Scholar
Rabinowitz, M. B., Wetherill, G. W. & Kopple, J. D. (1973). Lead metabolism in the normal human: stable isotope studies. Science 182, 725727.CrossRefGoogle ScholarPubMed
Reamer, D. C. & Veillon, C. (1981). Determination of selenium in biological materials by stable isotope dilution gas chromatography-mass spectrometry. Analytical Chemistry 53, 21662169.CrossRefGoogle ScholarPubMed
Roth, P. & Werner, E. (1985). Interrelations of radiocalcium absorption tests and their clinical relevance. Mineral and Electrolyte Metabolism 11, 351357.Google ScholarPubMed
Schwartz, R. & Giesecke, C. C. (1979). Mass spectrometry of a volatile Mg chelate in the measurement of stable 26Mg when used as a tracer. Clinica Chimica Acta 97, 18.CrossRefGoogle ScholarPubMed
Schwartz, R., Spencer, H. & Welsh, J. J. (1984). Magnesium absorption in human subjects from leafy vegetables, intrinsically labeled with stable 26Mg. American Journal of Clinical Nutrition 39, 571576.CrossRefGoogle ScholarPubMed
Schwartz, R., Spencer, H. & Wentworth, R. A. (1978). Measurement of magnesium absorption in man using stable 26Mg as a tracer. Clinica Chimica Acta 87, 265273.CrossRefGoogle ScholarPubMed
Self, R., Eagles, J., Fairweather-Tait, S. J. & Portwood, D. E. (1987). Fast atom bombardment mass spectrometry (FABMS) of mineral nutrients in human nutrition studies. Analytical Proceedings 24, 366367.Google Scholar
Serfass, R. E., Ziegler, E. E., Edwards, B. B. & Houk, R. S. (1989). Intrinsic and extrinsic stable isotopic zinc absorption by infants from formulas. Journal of Nutrition 119, 16611669.CrossRefGoogle ScholarPubMed
Shipley, R. A. & Clark, R. E. (1972). Tracer Methods for In Vivo Kinetics: theory and applications. New York: Academic Press.Google Scholar
Sirichakwal, P. P., Young, V. R. & Janghorbani, M. (1985). Absorption and retention of selenium from intrinsically labeled egg and selenite as determined by stable isotope studies in humans. American Journal of Clinical Nutrition 41, 264269.CrossRefGoogle ScholarPubMed
Smith, D. L., Atkin, C. & Westenfelder, C. (1985). Stable isotopes of calcium as tracers: methodology. Clinica Chimica Acta 146, 97101.CrossRefGoogle ScholarPubMed
Solomons, N. W., Janghorbani, M., Ting, B. T. G., Steinke, F. H., Christensen, M., Bijlani, R., Istfan, N. & Young, V. R. (1982). Bioavailability of zinc from a diet based on isolated soy protein: application in young men of the stable isotope tracer, 70Zn. Journal of Nutrition 112, 18091821.CrossRefGoogle ScholarPubMed
Swanson, C. A., Turnlund, J. R. & King, J. C. (1983). Effect of dietary zinc sources and pregnancy on zinc utilization in adult women fed controlled diets. Journal of Nutrition 113, 25572567.CrossRefGoogle ScholarPubMed
Taylor, C. M., Bacon, J. R., Aggett, P. J. & Bremner, I. (1991). Homeostatic regulation of zinc absorption and endogenous losses in zinc-deprived men. American Journal of Clinical Nutrition 53, 755763.CrossRefGoogle ScholarPubMed
Turnlund, J. R. (1989). The use of stable isotopes in mineral nutrition research. Journal of Nutrition 119, 714.CrossRefGoogle ScholarPubMed
Turnlund, J. R. (1991). Bioavailability of dietary minerals to humans: the stable isotope approach. CRC Critical Reviews in Food Science and Nutrition 30, 387396.CrossRefGoogle ScholarPubMed
Turnlund, J. R., Durkin, N., Costa, F. & Margen, S. (1986). Stable isotope studies of zinc absorption and retention in young and elderly men. Journal of Nutrition 116, 12391247.CrossRefGoogle Scholar
Turnlund, J. R., Keyes, W. R., Hudson, C. A., Betschart, A. A., Kretsch, M. J. & Sauberlich, H. E. (1991). A stable-isotope study of zinc, copper, and iron absorption and retention by young women fed vitamin B-6- deficient diets. American Journal of Clinical Nutrition 54, 10591064.CrossRefGoogle ScholarPubMed
Turnlund, J. R., King, J. C., Gong, B., Keyes, W. R. & Michel, M. C. (1985). A stable isotope study of copper absorption in young men: effect of phytate and α-cellulose. American Journal of Clinical Nutrition 42, 1823.CrossRefGoogle ScholarPubMed
Turnlund, J. R., King, J. C., Keyes, W. R., Gong, B. & Michel, M. C. (1984). A stable isotope study of zinc absorption in young men: effects of phytate and α-cellulose. American Journal of Clinical Nutrition 40, 10711077.CrossRefGoogle ScholarPubMed
Turnlund, J. R., Michel, M. C., Keyes, W. R., King, J. C. & Margen, S. (1982 b). Use of enriched stable isotopes to determine zinc and iron absorption in elderly men. American Journal of Clinical Nutrition 35, 10331040.CrossRefGoogle ScholarPubMed
Turnlund, J. R., Michel, M. C., Keyes, W. R., Schutz, Y. & Margen, S. (1982 a). Copper absorption in elderly men determined by using stable 65Cu. American Journal of clinical Nutrition 36, 587591.CrossRefGoogle ScholarPubMed
Turnlund, J. R., Wada, L., King, J. C., Keyes, W. R. & Acord, L. L. (1988). Copper absorption in young men fed adequate and low zinc diets. Biological Trace Element Research 17, 3141.CrossRefGoogle ScholarPubMed
Wada, L.Turnlund, J. R. & King, J. C. (1985). Zinc utilization in young men fed adequate and low zinc intakes. Journal of Nutrition 115, 13451354.CrossRefGoogle ScholarPubMed
Wastney, M. E., Gökmen, I. G., Aamodt, R. L., Rumblc, W. F., Gordon, G. E. & Henkin, R. I. (1991). Kinetic analysis of zinc metabolism in humans after simulataneous administration of 65Zn and 70Zn. American Journal of Physiology 260, R134R141.Google Scholar
Wastney, M. E. & Henkin, R. I. (1989). Calculation of zinc absorption in humans using tracers by fecal monitoring and a compartmental approach. Journal of Nutrition 119, 14381443.CrossRefGoogle Scholar
Weaver, C. M. (1985). Intrinsic mineral labeling of edible plants: methods and uses. CRC Critical Reviews in Food Science and Nutrition 23, 75101.CrossRefGoogle ScholarPubMed
Weaver, C. M. (1988). Isotopic tracer methodology; potential in mineral nutrition. In Trace Minerals in Food (Food Science & Technology Vol. 28), pp. 429454 [Smith, K. T., editor.] New York: Marcel Dekker.Google Scholar
Weaver, C. M., Heaney, R. P.Martin, B. R. & Fitzsimmons, M. L. (1992). Extrinsic vs intrinsic labeling of the calcium in whole-wheat flour. American Journal of Clinical Nutrition 55, 452454.CrossRefGoogle ScholarPubMed
Wharf, S. G., Fox, T. E., Eagles, J. & Fairweather-Tait, S. J. (1993). A stable isotope method for determining bioavailability from infant weaning foods. In Proceedings of Biovaliability '93, pp. 254257 [Schlemmer, U., editor.] Karlsruhe: Bundesforschungsanstalt für Ernährung.Google Scholar
Whittaker, P. G., Lind, T. & Williams, J. G. (1991). Iron absorption during normal human pregnancy: a study using stable isotopes. British Journal of Nutrition 65, 457463.CrossRefGoogle ScholarPubMed
Whittaker, P. G., Lind, T., Williams, J. G. & Gray, A. L. (1989). Inductively coupled plasma mass spectrometric determination of the absorption of iron in normal women. Analyst 114, 675678.CrossRefGoogle ScholarPubMed
Yergey, A. L., Abrams, S. A., Vieira, N. E., Eastell, R., Hillman, L. S. & Covell, D. G. (1990). Recent studies of human calcium metabolism using stable isotopic tracers. Canadian Journal of Physiology and Pharmacology 68, 973976.CrossRefGoogle ScholarPubMed
Yergey, A. L., Vieira, N. E. & Covell, D. G. (1987). Direct measurement of dietary fractional absorption using calcium isotopic tracers. Biomedical and Environmental Mass Spectrometry 14, 603607.CrossRefGoogle ScholarPubMed
Yergey, A. L., Vieira, N. E. & Hansen, J. W. (1980). Isotope ratio measurements of urinary calcium with a thermal ionization probe in a quadrupole mass spectrometer. Analytical Chemistry 52, 18111814.CrossRefGoogle Scholar
Ziegier, E. E., Serfass, R. E., Nelson, S. E., Figueroa-Colón, R., Edwards, B. B., Houk, R. S. & Thompson, J. J. (1989). Effect of low zinc intake on absorption and excretion of zinc by infants studied with 70Zn as extrinsic tag. Journal of Nutrition 119, 16471653.CrossRefGoogle Scholar