Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T21:25:48.221Z Has data issue: false hasContentIssue false

The Inter-Organ Flux of Substrates in Fed and Fasted Man, as Indicated by Arterio-Venous Balance Studies

Published online by Cambridge University Press:  14 December 2007

M. Elia
Affiliation:
Dunn Clinical Nutrition Centre, 100 Tennis Court Road, Cambridge CB2 1QL
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1991

References

REFERENCES

Abumrad, N. N., Rabin, D., Wise, K. L. & Lacy, W. W. (1982). The disposal of an intravenously administered amino acid load across the human forearm. Metabolism 31, 463470.CrossRefGoogle ScholarPubMed
Addis, T., Poo, L. J. & Lew, W. (1936). The quantities of protein lost by the various organs and tissues of the body during a fast. Journal of Biological Chemistry 115, 111116.CrossRefGoogle Scholar
Aoki, T. T., Brennan, M. F., Fitzpatrick, G. F. & Knight, D. C. (1981). Leucine meal increases glutamine and total nitrogen release from forearm muscle. Journal of Clinical Investigation 68, 15221528.CrossRefGoogle ScholarPubMed
Ardawi, M. S. M. (1987). The maximal activity of phosphate-dependent glutaminase and glutamine metabolism in the colon and small intestine of streptozotocin-diabetic rats. Diabetologia 30, 109114.Google Scholar
Ardawi, M. S. M., Majzoub, M. F. & Newsholme, E. A. (1988). Effect of glucocorticoid treatment on glucose and glutamine metabolism by the small intestine of the rat. Clinical Science 75, 93100.CrossRefGoogle Scholar
Ardawi, M. S. M. & Newsholme, E. A. (1985). Fuel utilization in colonocytes of the rat. Biochemical Journal 231, 713719.Google Scholar
Atkinson, D. E. & Bourke, E. (1985). The role of ureagenesis in pH homeostasis. In Metabolic regulation, pp. 179185 [Ochs, R. S., Hanson, R. W. and Hall, J., editors]. Amsterdam, New York and Oxford: Elsevier Science Publishers.Google Scholar
Atkinson, D. E. & Camien, M. N. (1982). The role of urea synthesis in the removal of metabolic bicarbonate and the regulation of blood pH. Current Topics in Cellular Regulation 21, 261302.Google Scholar
Aulick, J. L. H. & Wilmore, D. W. (1979). Increased peripheral amino acid release following burn injury. Surgery 85, 560565.Google Scholar
Balasse, E. O. (1979). Kinetics of ketone body metabolism in fasting humans. Metabolism 28, 4150.CrossRefGoogle ScholarPubMed
Balasse, E. O. & Neef, M. A. (1975). Inhibition of ketogenesis by ketone bodies in fasting humans. Metabolism 24, 9991007.CrossRefGoogle ScholarPubMed
Baverel, G. & Lund, P. (1979). A role for bicarbonate in the regulation of mammalian glutamine metabolism. Biochemical Journal 184, 599606.CrossRefGoogle ScholarPubMed
Bjorkman, O. & Eriksson, L. S. (1983). Splanchnic glucose metabolism during leg exercise in 60-hr fasted humans. American Journal of Physiology 245, E443E448.Google Scholar
Bjorkman, O. & Eriksson, L. S. (1985). Influence of a 60 hr fast on insulin mediated splanchnic and peripheral glucose metabolism in humans. Journal of Clinical Investigation 76, 8792.CrossRefGoogle Scholar
Bougneres, P.-F. & Ferre, P. (1987). Study of ketone body kinetics in children by combined perfusion of 13C and 2H3 tracers. American Journal of Physiology 253, E496E501.Google ScholarPubMed
Brand, K., Fekl, W., von Hintzenstern, J., Langer, K., Luppa, P. & Schoerner, C. (1989). Metabolism of glutamine in lymphocytes. Metabolism 38, Suppl. 1, 2933.Google Scholar
Brundin, T., Hagenfeldt, L., Soderberg, R. & Wahren, J. (1987). Blood flow, substrate utilization and heat generation in tissues drained by the azygos vein in man. Clinical Physiology 7, 481491.Google Scholar
Burrin, D. G., Ferrell, C. L., Eisemann, J. H., Britton, R. A. & Nienaber, J. A. (1989). Effect of nutrition on splanchnic blood flow and oxygen consumption in sheep. British Journal of Nutrition 62, 2334.Google Scholar
Cahill, G. F., Herrera, M. G., Morgan, A. P., Soeldner, J. S., Steinke, J., Levy, P. L., Reichard, G. A. & Kipnis, D. M. (1966). Hormone-fuel interrelationships during fasting. Journal of Clinical Investigation 45, 17511769.Google Scholar
Caldwell, M. D. (1989). Local glutamine metabolism in wounds and inflammation. Metabolism 38, Suppl. 1, 3439.CrossRefGoogle ScholarPubMed
Chang, T. W. & Goldberg, A. L. (1978). The metabolic fates of amino acids and the formation of glutamine in skeletal muscle. Journal of Biological Chemistry 253, 36853695.CrossRefGoogle ScholarPubMed
Coppack, S. W., Fisher, R. M., Gibbons, G. F., Humphreys, S. M., McDonough, M. J., Potts, J. L. & Frayn, K. N. (1990). Post-prandial substrate deposition in human forearm and adipose tissues in vivo. Clinical Science 79, 339348.CrossRefGoogle Scholar
da Fonseca-Wollheim, F. (1990). Deamidation of glutamine by increased plasma γ-glutamyltransferase is a source of rapid ammonia formation in blood and plasma specimens. Clinical Chemistry 36, 14791482.CrossRefGoogle ScholarPubMed
Davies, M. (1961). On body size and tissue respiration. Journal of Cellular and Comparative Physiology 57, 135147.Google Scholar
Dietze, G. J. (1983). Inter-organ substrate flow. In New Aspects of Clinical Nutrition, pp. 146168 [Kleinberger, G. and Deuch, E., editors]. Basel: Karger.Google Scholar
Dietze, G., Wicklmayr, M. & Mehnert, H. (1978). On the key role of ketogenesis for the regulation of glucose homeostasis during fasting: intrahepatic control, ketone levels and peripheral pyruvate oxidation. In Biochemical and Clinical Aspects of Ketone Body Metabolism, pp. 213225 [Soling, H. D. and Seufert, C. D., editors]. Stuttgart: Thieme.Google Scholar
Dietze, G., Wicklmayr, M., Schifman, R. & Mehnert, H. (1980). Metabolic fuels in fasting. Excerpta Medica International Congress Series 500, 314320.Google Scholar
Elia, M. (1981). Metabolic aspects of injury, starvation and other conditions in man. MD Thesis, Manchester University.Google Scholar
Elia, M. (1991 a). The energy equivalents of carbon dioxide (EeqCo2) and their importance in assessing energy expenditure when using tracer techniques. American Journal of Physiology 260, E75E88.Google ScholarPubMed
Elia, M. (1991 b). Energy expenditure in the whole body and individual human tissues, and the energy cost associated with specific metabolic processes. In Energy Metabolism: Tissue Determinants and Cellular Corollaries [Kinney, J. M., editor]. Raven Press.Google Scholar
Elia, M., Crozier, C. & Neale, G. (1984 a). Mineral metabolism during short-term starvation in man. Clinica Chimica Acta 139, 3745.CrossRefGoogle ScholarPubMed
Elia, M., Folmer, P., Schlatmann, A., Goren, A. & Austin, S. (1988). Carbohydrate fat and protein metabolism in muscle and in the whole body after mixed meal ingestion. Metabolism 37, 542551.Google Scholar
Elia, M., Folmer, P., Schlatmann, A., Goren, A. & Austin, S. (1989). Amino acid metabolism in muscle and in the whole body of man before and after ingestion of a single mixed meal. American Journal of Clinical Nutrition 49, 12031210.CrossRefGoogle ScholarPubMed
Elia, M., Ilic, V., Bacon, S., Williamson, D. H. & Smith, R. (1980). Relationship between the basal blood alanine concentration and removal of an alanine load in various clinical states in man. Clinical Science 58, 301309.CrossRefGoogle ScholarPubMed
Elia, M. & Jebb, S. A. (1990 a). Assessment of energy expenditure and body composition. Medicine International 82, 34073410.Google Scholar
Elia, M. & Jebb, S. A. (1990 b). Assessment of body composition: research techniques and bedside methods. South African Journal of Clinical Nutrition 3, 2126.Google Scholar
Elia, M., Lammert, O., Zed, C. & Neale, G. (1984 b). Energy metabolism during exercise in normal subjects undergoing total starvation. Human Nutrition: Clinical Nutrition 38C, 355362.Google Scholar
Elia, M. & Livesey, G. (1981). Branched-chain amino acid and oxo acid metabolism in human and rat muscle. In Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids, pp. 257262 [Walser, M. and Williamson, J. R., editors]. New York, Amsterdam, Oxford: Elsevier/North Holland.Google Scholar
Elia, M. & Livesey, G. (1983). Effects of ingested steak and infused leucine of forelimb metabolism in man and the fate of the carbon skeletons and amino groups of branched-chain amino acids. Clinical Science 64, 517526.Google Scholar
Elia, M. & Livesey, G. (1988). The theory and validity of indirect calorimetry during net lipid synthesis (Appendix). American Journal of Clinical Nutrition 47, 591607.CrossRefGoogle Scholar
Elia, M., Neale, G. & Livesey, G. (1985). Alanine and glutamine release from the human forearm: effects of glucose administration. Clinical Science 69, 123133.Google Scholar
Elia, M. & Parkinson, S. (1989). Protein economy during human starvation. European Journal of Clinical Nutrition 43, 139143.Google Scholar
Elia, M., Wood, S., Khan, K. & Pullicino, E. (1990). Ketone body metabolism in lean male adults during short-term starvation, with particular reference to forearm muscle metabolism. Clinical Science 78, 579584.Google Scholar
Elia, M., Zed, C., Neale, G. & Livesey, G. (1987). The energy cost of triglyceride-fatty acid recycling in non-obese subjects after an overnight fast and four days of starvation. Metabolism 36, 251255.Google Scholar
Elwyn, D. H., Launder, W. J., Parikh, H. C. & Wise, E. M. (1972). Roles of plasma and erythrocytes in interorgan transport of amino acids in dogs. American Journal of Physiology 222, 13331342.Google Scholar
Eriksson, L. S., Olsson, M. & Bjorkman, O. (1988). Splanchnic metabolism of amino acids in healthy subjects. Effects of 60 hrs of fasting. Metabolism 37, 11591162.Google Scholar
Felig, P. (1973). The glucose alanine cycle. Metabolism 22, 179207.Google Scholar
Felig, P., Marliss, E. B. & Cahill, G. F. (1971). Metabolic response to human growth hormone during prolonged starvation. Journal of Clinical Investigation 50, 411421.Google Scholar
Felig, P., Owen, O. E., Wahren, J. & Cahill, G. F. (1969). Amino acid metabolism during prolonged starvation. Journal of Clinical Investigation 48, 584594.Google Scholar
Felig, P., Pozefsky, T., Marliss, E. & Cahill, G. F. (1970). Alanine, key role in gluconeogenesis. Science 167, 10031004.Google Scholar
Felig, P. & Wahren, J. (1971). Amino acid metabolism in exercising man. Journal of Clinical Investigation 50, 27032714.Google Scholar
Felig, P. & Wahren, J. (1975). Liver as a site of insulin and glucagon action in normal, diabetic and obese humans. Israel Journal of Medical Sciences 11, 528539.Google ScholarPubMed
Felig, P., Wahren, J. & Ahlborg, G. (1973 a). Uptake of individual amino acids by the human brain. Proceedings of the Society for Experimental Biology and Medicine 142, 230231.Google Scholar
Felig, P., Wahren, J. & Hendler, R. (1975). Influence of oral glucose ingestion on splanchnic glucose and gluconeogenic substrate metabolism in man. Diabetes 24, 468475.Google Scholar
Felig, P., Wahren, J. & Raf, L. (1973 b). Evidence of inter-organ amino acid transport by blood cells in humans. Proceedings of the National Academy of Sciences of the USA 70, 17751779.CrossRefGoogle ScholarPubMed
Ferrannini, E., Wahren, J., Felig, P. & De Fronzo, R. A. (1980). The role of fractional glucose extraction in the regulation of splanchnic glucose metabolism in normal and diabetic man. Metabolism 29, 2835.Google Scholar
Fery, F. & Balasse, E. O. (1983). Ketone body turnover during and after exercise in overnight fasted and starved humans. American Journal of Physiology 245, E318E325.Google Scholar
Fery, F. & Balasse, E. O. (1986). Response of ketone body metabolism to exercise during transition from the postabsorptive to fasted state. American Journal of Physiology 250, E495E501.Google Scholar
Foster, K. J., Alberti, K. G. M. M., Binder, C., Hinks, L., Karran, S. J., Orskov, H., Smythe, P., Talbot, S. & Turnell, D. (1979). Lipid metabolites and nitrogen balance after abdominal surgery in man. British Journal of Surgery 66, 242245.Google Scholar
Frayn, K. N., Khan, K., Coppack, S. W. & Elia, M. (1991). Amino acid metabolism in human subcutaneous adipose tissue in vivo. Clinical Science 80, 471474.CrossRefGoogle ScholarPubMed
Fulks, R. M., Li, J. B. & Goldberg, A. L. (1975). Effect of insulin, glucose, and amino acids on protein turnover in rat diaphragm. Journal of Biological Chemistry 250, 290298.Google Scholar
Garber, A. J., Karl, I. E. & Kipnis, D. M. (1976). Alanine and glutamine synthesis and release from skeletal muscle. II. The precursor role of amino acids in alanine and glutamine synthesis. Journal of Biological Chemistry 251, 836843.CrossRefGoogle ScholarPubMed
Garber, A. J., Menzel, P. H., Boden, G. & Owen, O. E. (1974). Hepatic Ketofenesis and gluconeogenesis in humans. Journal of Clinical Investigation 54, 981989.Google Scholar
Garby, L., Garrow, J. S., Jorgensen, B., Lammert, O., Madsen, K., Sorensen, P. & Webster, J. (1987). Relation between energy expenditure and body composition in man: specific energy expenditure in vivo of fat and fat free tissue. European Journal of Clinical Investigation 42, 301305.Google Scholar
Gelfand, R. A., Glickman, M. G., Jacob, R., Sherwin, R. S. & De Fronzo, R. A. (1986). Removal of infused amino acids by splanchnic and leg tissues in humans. American Journal of Physiology 250, E407E413.Google Scholar
Goldberg, A. L. & Odessey, R. (1972). Oxidation of amino acids by diaphragms from fed and fasted rats. American Journal of Physiology 223, 13841391.CrossRefGoogle ScholarPubMed
Goldstein, L. & Newsholme, E. A. (1976). The formation of alanine from amino acids in diaphragm muscle of the rat. Biochemistry 154, 554558.Google ScholarPubMed
Goschke, H. (1977). Mechanism of glucose intolerance during fasting: differences between lean and obese subjects. Metabolism 26, 11471153.CrossRefGoogle ScholarPubMed
Goschke, H., Girard, J. & Stahl, M. (1976). Der stoffwechsell bei vollstandigem Fasten. Unterschiedliches Verhalten bei Mannern und Frauen sowie bei Normalpersonen und Adiposen. (Metabolic differences between males and females and between normal and obese subjects during a total fast.) Klinische Wochenschrift 54, 527553.Google Scholar
Goschke, H., Nisoli, M., Leutenegger, A. & Tholen, H. (1977). Comparison of glucose and fructose tolerance before and after starvation. American Journal of Clinical Nutrition 30, 13981401.Google Scholar
Goschke, H., Stahl, M. & Tholen, H. (1975). Nitrogen loss in normal and obese subjects during total fast. Klinische Wochenschrift 53, 605610.Google Scholar
Goto, M., Shinno, H. & Ichihara, A. (1977). Isozyme patterns of branched-chain amino acid transaminase in human tissues and tumours. Gann 68, 663667.Google Scholar
Hagenfeldt, L., Eriksson, S. & Wahren, J. (1980). Influence of leucine on the arterial concentrations and regional exchange of amino acids in healthy subjects. Clinical Science 59, 173181.CrossRefGoogle ScholarPubMed
Hagenfeldt, L. & Wahren, J. (1971). Human forearm muscle metabolism during exercise VI. Substrate utilization in prolonged fasting. Scandinavian Journal of Clinical and Laboratory Investigation 27, 299306.CrossRefGoogle ScholarPubMed
Hall, S. E. H., Wastney, M. E., Bolton, T. M., Braaten, J. T. & Berman, M. (1984). Ketone body kinetics in humans: The effects of insulin dependent diabetes, obesity and starvation. Journal of Lipid Research 25, 11841194.Google Scholar
Hallgren, P., Sjostrom, L., Hedlund, H., Lundell, L. & Olbe, L. (1989). Influence of age, fat cell weight, and obesity on oxygen consumption of human adipose tissue. American Journal of Physiology 256, E467E474.Google Scholar
Haussinger, D. (1990). Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochemical Journal 267, 281290.Google Scholar
Haymond, M. W., Karl, I. E., Clarke, W. L., Pagliara, A. S. & Santiago, J. V. (1982). Differences in circulating gluconeogenic substrates during short term fasting in men, women and children. Metabolism 31, 3342.Google Scholar
Heitmann, R. N. & Bergman, E. N. (1980). Integration of amino acid metabolism in sheep: effects of fasting and acidosis. American Journal of Physiology 239, E248E254.Google ScholarPubMed
Henry, C. J. K., Rivers, J. P. W. & Payne, P. R. (1986). Does the pattern of tissue mobilization dictate protein requirements. Human Nutrition: Clinical Nutrition 40C, 8792.Google Scholar
Heymsfield, S. B. & McManus, C. B. (1985). Tissue components of weight loss in cancer patients. A new method of study and preliminary observations. Cancer 55, 238249.Google Scholar
Jackson, R. A., Hamling, J. B., Sim, B. M., Hawa, M. I., Blix, P. M. & Nabarro, J. D. N. (1987). Peripheral lactate and O2 metabolism in man: The influence of oral glucose loading. Metabolism 36, 144150.Google Scholar
Jensen, D. M., Haymond, M. W., Gerich, J. E., Cryer, P. E. & Miles, J. M. (1987). Lipolysis during fasting. Decreased suppression by insulin and increased stimulation by epinephrine. Journal of Clinical Investigation 79, 207213.Google Scholar
Khan, K. & Elia, M. (1991). Factors affecting the stability of glutamine in solution. Clinical Nutrition, 10, 186192.CrossRefGoogle ScholarPubMed
Khatra, B. S., Chawla, R. K., Sewell, C. W. & Rudman, D. (1977). Distribution of branched-chain α-keto acid dehydrogenases in primate tissues. Journal of Clinical Investigation 59, 558564.CrossRefGoogle ScholarPubMed
Kominz, D. R., Hough, A., Symonds, P. & Laki, K. (1954). The amino acid composition of actin, myosin, tropomyosin and meromyosins. Archives of Biochemistry and Biophysics 50, 148159.Google Scholar
Livesey, G. & Elia, M. (1988). The estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. American Journal of Clinical Nutrition 47, 608628.Google Scholar
Livesey, G. & Lund, P. (1980). Enzymatic determination of branched-chain amino acids and 2-oxoacids in rat tissues. Transfer of 2-oxoacids from skeletal muscle to liver in vivo. Biochemical Journal 188, 705713.Google Scholar
Lonsdale, D., Faulkner, W. R., Price, J. W. & Smeby, R. R. (1969). Intermittent cerebellar ataxia associated with hyperpyruvic acidaemia and hyperalaninaemia. Pediatrics 43, 10251033.Google Scholar
Mallette, L. E., Exton, J. H. & Park, C. R. (1969). Control of gluconeogenesis from amino acids in the perfused rat liver. Journal of Biological Chemistry 244, 57135723.Google Scholar
Manchester, K. L. (1965). Oxidation of amino acids by isolated rat diaphragm and the influence of insulin. Biochimica et Biophysica Acta 100, 295298.Google Scholar
Marliss, E. B., Aoki, T. T., Pozefsky, T., Most, A. S. & Cahill, G. F. (1971). Muscle and splanchnic glutamine and glutamate metabolism in postabsorptive and starved man. Journal of Clinical Investigation 50, 814817.Google Scholar
Meikle, A. W. & Klain, G. J. (1972). Effect of fasting and fasting refeeding on conversion of leucine to CO2 and lipids in rats. American Journal of Physiology 222, 12461250.Google Scholar
Merimee, T. J., Misbin, R. I. & Pulkkinen, A. J. (1978). Sex variations in free fatty acids and ketones during fasting. Evidence for a role of glucagon. Journal of Clinical Endocrinology & Metabolism 46, 414419.Google Scholar
Morrow, P. G., Marshall, W. P., Kim, H. J. & Kalkhoff, R. K. (1981). Metabolic response to starvation II. Effects of sex steroid administration to pre- and postmenopausal women. Metabolism 30, 274278.Google Scholar
Newsholme, P. & Newsholme, E. A. (1989). Rates of utilization of glucose, glutamine and oleate and formation of end-products by mouse peritoneal macrophages in culture. Biochemical Journal 261, 211218.Google Scholar
Nissim, I., Yudkoff, M. & Segal, S. (1986). Nitrogen sources for renal ammoniagenesis: study with 15N amino acid. American Journal of Physiology 251, F995F1002.Google Scholar
Odessey, R. & Goldberg, A. L. (1972). Oxidation of leucine by rat skeletal muscle. American Journal of Physiology 223, 13761383.Google Scholar
Odessey, R., Khairallah, E. A. & Goldberg, A. L. (1974). Origin and possible significance of alanine production by skeletal muscle. Journal of Biological Chemistry 249, 76237629.Google Scholar
Owen, O. E., Felig, P., Morgan, A. P., Wahren, J. & Cahill, G. F. (1969). Liver and kidney metabolism during prolonged starvation. Journal of Clinical Investigation 48, 574583.Google Scholar
Owen, O. E., Morgan, A. P., Kemp, H. G., Sullivan, J. M., Herrera, M. G. & Cahill, G. F. (1967). Brain metabolism during fasting. Journal of Clinical Investigation 46, 15891595.Google Scholar
Owen, O. E. & Reichard, G. A. (1971). Human forearm metabolism during progressive starvation. Journal of Clinical Investigation 50, 15361545.Google Scholar
Owen, O. E. & Reichard, G. A. (1975). Ketone body metabolism in normal, obese and diabetic subjects. Israel Journal of Medical Sciences 11, 560570.Google Scholar
Owen, O. E., Reichard, G. A., Markus, H., Boden, G., Mozzoli, M. A. & Shuman, C. R. (1973). Rapid intravenous sodium acetoacetate infusion in man: metabolic and kinetic responses. Journal of Clinical Investigation 52, 26062616.Google Scholar
Owen, O. E., Reichle, F. A., Mozzoli, M. A., Kreulen, T., Patel, M. S., Elfenbein, I. B., Golsorkhi, M., Chang, K. H. Y., Rao, N. S., Sue, H. S. & Boden, G. (1981). Hepatic, gut and renal substrate flux rates in patients with hepatic cirrhosis. Journal of Clinical Investigation 68, 240252.Google Scholar
Owen, O. E. & Robinson, R. R. (1963). Amino acid extraction and ammonia metabolism by the human kidney during prolonged administration of ammonium chloride. Journal of Clinical Investigation 42, 263276.Google Scholar
Pitts, R. F. (1973). Production and excretion of ammonia in relation to acid base regulation. Handbook of Physiology, sect. 8, pp. 455496. Washington, DC: American Physiological Society.Google Scholar
Pitts, R. F. & Pilkington, L. A. (1966). The relation between plasma concentrations of glutamine and glycine and utilization of their nitrogens as sources of urinary ammonia. Journal of Clinical Investigation 45, 8693.Google Scholar
Pitts, R. F., Pilkington, L. A. & De Haas, J. M. C. (1965). 15N tracer studies on the origin of urinary ammonia in the acidotic dog with notes on the enzymatic synthesis of labelled glutamic acid and glutamine. Journal of Clinical Investigation 44, 731745.Google Scholar
Plumley, D. A., Souba, W. W., Hautamaki, R. D., Martin, T. D., Flynn, T. C., Rout, W. R. & Copeland, E. M. (1990). Accelerated lung amino acid release in hyperdynamic septic surgical patients. Archives of Surgery 125, 5761.Google Scholar
Pozefsky, T., Felig, P., Tobin, J. D., Soeldner, S. & Cahill, G. F. (1969). Amino acid balance across tissues of the forearm in post-absorptive man. Effect of insulin at two dose levels. Journal of Clinical Investigation 48, 22732282.Google Scholar
Pozefsky, T. & Tancredi, R. G. (1972). Effects of intrabrachial arterial infusion of pyruvate on forearm tissue metabolism: interrelationships between pyruvate lactate and alanine. Journal of Clinical Investigation 51, 23592369.Google Scholar
Pullicino, E. & Elia, M. (1991). Intravenous carbohydrate overfeeding: a method for rapid nutritional repletion. Clinical Nutrition 10, 146154.Google Scholar
Randle, P. J. (1978). Pyruvate dehydrogenase complex – meticulous regulator of glucose disposal in animals. Trends in Biochemical Sciences 3, 217219.Google Scholar
Reichard, G. A., Haff, A. C., Skutches, C. L., Paul, P., Holroyde, C. P. & Owen, O. E. (1979). Plasma acetone metabolism in fasting humans. Journal of Clinical Investigation 63, 619626.Google Scholar
Reichard, G. A., Owen, O. E., Haff, A. C., Paul, P. & Bortz, W. M. (1974). Ketone body production and oxidation in fasting obese humans. Journal of Clinical Investigation 53, 508513.Google Scholar
Rennie, M. J., Hundal, H. S., Babij, P., MacLennan, P., Taylor, P. M., Watt, P. W., Jepson, M. M. & Millward, D. J. (1986). Characteristics of a glutamine carrier in skeletal muscle have important consequences for nitrogen loss in injury, infection and chronic disease. Lancet ii, 10081012.Google Scholar
Robinson, A. M. & Williamson, D. H. (1980). Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiological Reviews 60, 143187.Google Scholar
Sapir, D. G. & Owen, O. E. (1975). Renal conservation of ketone bodies during starvation. Metabolism 24, 2333.Google Scholar
Shinnick, F. L. & Harper, A. E. (1976). Branched-chain amino acid oxidation by isolated rat tissue preparations. Biochimica et Biophysica Acta 437, 477486.Google Scholar
Smith, R. & Elia, M. (1983). Branched-chain amino acids in catabolic states. Proceedings of the Nutrition Society 42, 473487.Google Scholar
Snell, K. & Duff, D. A. (1977). The release of alanine by rat diaphragm muscle in vitro. Biochemical Journal 162, 399403.Google Scholar
Snyder, W. S., Cook, M. J., Nasset, E. S., Karhausen, L. R., Howells, G. P. & Tipton, I. H. (1975). Report of the Task Group on Reference Man. International Commission on Radiological Protection no. 23. Oxford, New York, Toronto, Sydney and Braunschweig: Pergamon Press.Google Scholar
Souba, W. W., Herskowitz, K., Klimberg, V. S., Salloum, R. M., Plumley, D. A., Flynn, T. C. & Copeland, E. M. (1990 a). The effects of sepsis and endotoxaemia on gut glutamine metabolism. Annals of Surgery 211, 543551.Google Scholar
Souba, W. W., Plumley, D. A., Salloum, R. M. & Copeland, E. M. (1990 b). Effect of glucocorticoids on lung glutamine and alanine metabolism. Surgery 108, 213219.Google Scholar
Souba, W. W., Scott, T. E. & Wilmore, D. W. (1985 a). Intestinal consumption of intravenously administered fuels. Journal of Parenteral and Enteral Nutrition 9, 1822.Google Scholar
Souba, W. W., Smith, R. J. & Wilmore, D. W. (1985 b). Effects of glucocorticoids on glutamine metabolism in visceral organs. Metabolism 34, 450456.Google Scholar
Souba, W. W. & Wilmore, D. W. (1983). Postoperative alteration of arterio-venous exchange of amino acids across the gastrointestinal tract. Surgery 94, 342349.Google Scholar
Stone, W. J. & Pitts, R. F. (1967). Pathways of ammonia metabolism in the intact functioning kidney of the dog. Journal of Clinical Investigation 46, 11411150.Google Scholar
Swaminathan, R., Morgan, D. B. & Wales, J. K. (1982). Effect of fasting on the disappearance of injected alanine and 3-hydroxybutyrate in obese subjects. Clinical Science 62, 7781.Google Scholar
Tamarappoo, B. K., Joshi, S. & Welbourne, T. C. (1990). Interorgan glutamine flow regulation in metabolic acidosis. Mineral and Electrolyte Metabolism 16, 322330.Google Scholar
Tizianello, A., De Ferrari, G., Garibotto, G., Gurreri, G. & Robands, C. (1980). Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. Journal of Clinical Investigation 65, 11621173.Google Scholar
Wahren, J., Felig, P. & Hagenfeldt, L. (1976). Effect of protein ingestion on the splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. Journal of Clinical Investigation 57, 987999.Google Scholar
Wahren, J., Felig, P., Havel, R. J., Jorfeldt, L., Pernow, B. & Saltin, B. (1973). Amino acid metabolism in McArdles Syndrome. New England Journal of Medicine 288, 774777.Google Scholar
Weast, R. C. (1976). Handbook of Chemistry and Physics (57th edn), pp. D274D279. Boca Raton, FL: CRC.Google Scholar
Welbourne, T. C. (1987). Interorgan glutamine flow in metabolic acidosis. American Journal of Physiology 253, F1069F1076.Google Scholar
Williamson, D. H. & Whitelaw, E. (1978). Physiological aspects of the regulation of ketogenesis. Biochemical Society Symposium 43, 137161.Google Scholar
Wilmore, D. W. & Aulick, L. H. (1978). Metabolic changes in burned patients. Surgical Clinics of North America 58, 11731187.Google Scholar
Wilmore, D. W., Goodwin, C. W., Aulick, L. H., Powanda, M. C., Mason, A. D. & Pruit, B. A. (1980). Effect of injury and infection on visceral metabolism and circulation. Annals of Surgery 192, 491504.Google Scholar
Windmueller, H. G. (1982). Glutamine utilization by the small intestine. Advances in Enzymology 53, 201237.Google Scholar
Windmueller, H. G. & Spaeth, A. E. (1974). Uptake and metabolism of plasma glutamine by the small intestine. Journal of Biological Chemistry 249, 50705079.Google Scholar
Windmueller, H. G. & Spaeth, A. E. (1978). Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. Journal of Biological Chemistry 253, 6976.Google Scholar
Windmueller, H. G. & Spaeth, A. E. (1980). Respirator fuel and nitrogen metabolism in vivo in small intestine of fed rats. Journal of Biological Chemistry 255, 107112.Google Scholar
Wise, J. K., Hendler, R. & Felig, P. (1973). Influence of glucocorticoids on glucagon secretion and plasma amino acid concentration in man. Journal of Clinical Investigation 52, 27742782.Google Scholar
Wolfe, B. M., Havel, J. R., Marliss, E. B., Kane, J. P., Seymour, J. & Ahuja, S. P. (1976). Effect of a 3-day fast and of ethanol on splanchnic metabolism of free fatty acids, amino acids, and carbohydrates in healthy young men. Journal of Clinical Investigation 57, 329340.Google Scholar
Wusteman, M., Wight, D. G. D. & Elia, M. (1990). Protein metabolism after ‘injury’ with turpentine: a rat model for clinical trauma. American Journal of Physiology 259, E763E769.Google Scholar
Zurlo, F., Larson, K., Bogardus, C. & Ravussin, E. (1990). Skeletal muscle metabolism is a major determinant of resting energy expenditure. Journal of Clinical Investigation 86, 14231427.Google Scholar