Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T18:20:39.400Z Has data issue: false hasContentIssue false

Factors Affecting the Utilization of ‘Poor-Quality’ Forages by Ruminants Particularly Under Tropical Conditions

Published online by Cambridge University Press:  14 December 2007

R. A. Leng
Affiliation:
Department of Biochemistry, Microbiology and Nutrition, University of New England, Armidale, NSW 2351, Australia
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1990

References

REFERENCES

Allison, M. J., Bryant, M. P. & Doetsch, R. N. (1962). Studies on the metabolic function of branched-chain volatile fatty acids, growth factors for Ruminococci. I. Incorporation of isovalerate into leucine. Journal of Bacteriology 83, 523532.CrossRefGoogle ScholarPubMed
Annison, E. F. & Lewis, D. (1959). Metabolism in the Rumen. London: Methuen.Google Scholar
Argyle, J. L. & Baldwin, R. L. (1989). Effects of amino acids and peptides on rumen microbial growth yields. Journal of Dairy Science 72, 20172027.CrossRefGoogle ScholarPubMed
Baldwin, B. R., Forsberg, N. E. & Hu, C.-Y. (1985). Potential for altering energy partition in the lactating cow. Journal of Dairy Science 68, 33963402.CrossRefGoogle Scholar
Ben-Ghedalia, D. & Yosef, E. (1989). SO2-treated straw as a silage additive: fermentation data on lucerne with particular reference to protein degradation. Animal Feed Science and Technology 22, 247254.CrossRefGoogle Scholar
Bird, S. H. (1989). Production from ciliate-free ruminants. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 233246 [Nolan, J. V., Leng, R. A. and Demeyer, D. I., editors]. Armidale, Australia: Penambul Books.Google Scholar
Bird, S. H., Hill, M. K. & Leng, R. A. (1979). The effects of defaunation of the rumen on the growth of lambs on low-protein high-energy diets. British Journal of Nutrition 42, 8187.CrossRefGoogle ScholarPubMed
Bird, S. H. & Leng, R. A. (1978). The effects of defaunation of the rumen on the growth of cattle on low-protein high-energy diets. British Journal of Nutrition 40, 163167.CrossRefGoogle ScholarPubMed
Bird, S. H. & Leng, R. A. (1985). Productivity responses to eliminating protozoa from the rumen of sheep. In Biotechnology and Recombinant DNA Technology in the Animal Production Industries – Reviews in Rural Science 6, pp. 109117 [Leng, R. A., Barker, J. S. F., Adams, D. B. and Hutchinson, K. J., editors]. Armidale, Australia: University of New England.Google Scholar
Bird, S. H., Nolan, J. V. & Leng, R. A. (1990). Nutritional significance of rumen protozoa. Paper presented at VIIth International Symposium on Ruminant Physiology (1989), Satellite Symposium on Regulation of Microbial Metabolism in the Rumen Ecosystem. Hakone, Japan. (In the Press.)Google Scholar
Blaxter, K. L. (1962). The Energy Metabolism of Ruminants. London: Hutchinson.Google Scholar
Boniface, A. M., Murray, R. M. & Hogan, J. P. (1986). Optimum level of ammonia in the rumen liquor of cattle fed tropical pasture hay. Proceedings of the Australian Society of Animal Production 16, 151154.Google Scholar
Bray, A. C. & Till, A. R. (1975). Metabolism of sulphur in the gastro-intestinal tract. In Digestion And Metabolism In The Ruminant, pp. 243260 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, Australia: University of New England Publishing Unit.Google Scholar
Bryant, M. P. & Robinson, I. M. (1961 a). Studies on the nitrogen requirements of some ruminal cellulolytic bacteria. Applied Microbiology 9, 96103.CrossRefGoogle ScholarPubMed
Bryant, M. P. & Robinson, I. M. (1961 b). Some nutritional requirements of the genus Ruminococcus. Applied Microbiology 9, 9195.CrossRefGoogle ScholarPubMed
Bryant, M. P. & Robinson, I. M. (1962). Some nutritional characteristics of predominant culturable ruminal bacteria. Journal of Bacteriology 84, 605 614.CrossRefGoogle ScholarPubMed
Bryant, M. P. & Robinson, I. M. (1963). Apparent incorporation of ammonia and amino acid carbon during growth of selected species of ruminal bacteria. Journal of Dairy Science 46, 150154.CrossRefGoogle Scholar
Cañas, R., Romero, J. J. & Baldwin, R. L. (1982). Maintenance energy requirements during lactation in rats. Journal of Nutrition 112, 18761880.CrossRefGoogle ScholarPubMed
Chalupa, W. (1980). Chemical control of rumen microbial metabolism. In Digestive Physiology and Metabolism in the Ruminant, pp. 325347 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press.CrossRefGoogle Scholar
Cheng, K. J., Forsberg, C. W., Minato, H. & Costerton, J. W. (1990). Microbial ecology and physiology of feed degradation within the rumen. Paper presented at VIIth International Symposium on Ruminant Physiology. Sendai, Japan. (In the Press.)Google Scholar
Cotta, M. A. & Russell, J. B. (1982). Effect of peptides and amino acids on efficiency of rumen bacterial protein synthesis in continuous culture. Journal of Dairy Science 65, 226234.CrossRefGoogle Scholar
Davis, J. J. & Leng, R. A. (1988). Cottonseed hulls as a feed for sheep. In Recent Advances in Animal Nutrition in Australia 1989, p. 33AAbstr. [Farrell, D. J., editor]. Armidale, Australia: University of New England, Department of Biochemistry, Microbiology and Nutrition.Google Scholar
Devendra, C. (1990). Comparative aspects of digestive physiology and nutrition in goats and sheep. Paper presented at Satellite Symposium on Ruminant Physiology and Nutrition in Asia. Sendai, Japan (1989). (In the Press.)Google Scholar
Durand, M., Beaumatin, Ph., Dumay, C., Maschy, R. & Komisarczuk, S. (1986). Influence de l'addition de phosphore sur la digestion d'une paille traitée à l'ammoniac par les microorganisms du rumen en fermenteur semi-continu (Rusitec). (Influence of phosphorus addition on the digestion of ammonia-treated straw by rumen micro-organisms in a semi-continuous fermenter (Rusitec).) Reproduction Nutrition Développement 26, 297298.CrossRefGoogle Scholar
Durand, M. & Komisarczuk, S. (1988). Influence of major minerals on rumen microbiota. Journal of Nutrition 118, 249260.CrossRefGoogle ScholarPubMed
Elliott, R. C. & O'Donovan, M. W. (1971). In Report – Henderson Research Station, Harare, Zimbabwe.Google Scholar
Forster, R. J. & Leng, R. A. (1989). The effect of varying protozoal population and diet supplementation on wool growth. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 331332 [Nolan, J. V., Leng, R. A. and Demeyer, D. I., editors]. Armidale, Australia: Penambul Books.Google Scholar
Geenty, K. G., Smith, M. C. & Bartley, K. (1987). Effects of varying levels of dietary protein on lamb growth rate and carcass composition. In 4th Australasian Asian Association of Animal Production Animal Science Congress, p. 360 [Reardon, T. F., Adam, J. L., Campbell, A. G. and Sumner, R. M. W., editors]. Hamilton, New Zealand: New Zealand and Australian Society of Animal Production.Google Scholar
Godoy, S. & Chicco, C. (1990). Annual Report – FONIAP. Maracay, Venezuela: Fondo Nacional de Investigaciones Agropecuaries.Google Scholar
Gordon, G. L. R. & Phillips, M. W. (1989). Comparative fermentation properties of anaerobic fungi from the rumen. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 127138 [Nolan, R. A., Leng, J. V. and Demeyer, D. I., editor]. Armidale, Australia: Penambul Books.Google Scholar
Graham, N. McC., Wainman, F. W., Blaxter, K. L. & Armstrong, D. G. (1959). Environmental temperature, energy metabolism and heat regulation in sheep. I. Energy metabolism in closely clipped sheep. Journal of Agricultural Science 52, 1324.CrossRefGoogle Scholar
Habib, G., Nolan, J. V. & Leng, R. A. (1989). Fermentative digestion and metabolism in faunated or fauna-free lambs fed roughage-based diets. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 323326 [Nolan, J. V., Leng, R. A. and Demeyer, D. I., editors]. Armidale, Australia: Penambul Books.Google Scholar
Hegarty, R. S., Nolan, J. V. & Leng, R. A. (1989). Evidence for protozoa influencing rumen sulphur availability. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 305306 [Nolan, J. V., Leng, R. A. and Demeyer, D. I., editors]. Armidale, Australia: Penambul Books.Google Scholar
Hemsley, J. A. & Moir, R. J. (1963). The influence of higher volatile fatty acids on the intake of urea-supplemented low quality cereal hay by sheep. Australian Journal of Agricultural Research 14, 509517.CrossRefGoogle Scholar
Hennessy, D. W. (1984). The role of protein in improving production of cattle grazing native pastures in subtropical New South Wales. PhD Thesis, University of New England, Armidale, Australia.Google Scholar
Hobson, P. N., Chesson, A. & Forsberg, C. W. (1988). Polysaccharide degradation by rumen microorganisms. In The Rumen Microbial Ecosystem, pp. 251284 [Hobson, P. N., editor]. London: Elsevier Applied Science.Google Scholar
Hobson, P. N., McDougall, E. I. & Summers, R. (1968). The nitrogen sources of Bacteroides amylophilus. Journal of General Microbiology 50, i Abstr.Google ScholarPubMed
Hume, I. D. (1970). Synthesis of microbial protein in the rumen. III. The effect of dietary protein. Australian Journal of Agricultural Research 21, 305314.CrossRefGoogle Scholar
Hungate, R. E. & Dyer, I. A. (1956). Effect of valeric and isovaleric acids on straw utilization by steers. Journal of Animal Science 15, 485488.CrossRefGoogle Scholar
Hunter, R. A. (1988). Some aspects of the role of concentrates in increasing feed intake and productivity of cattle fed fibrous diets. In Ruminant Feeding Systems Utilizing Fibrous Agricultural Residues – 1987, pp. 3748 [Dixon, R. M., editor]. Canberra, Australia: Australian International Development Programme.Google Scholar
Ivan, M. (1989). The involvement of rumen protozoa in copper metabolism and animal health. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 199210 [Nolan, J. V., Leng, R. A. and Demeyer, D. I., editors]. Armidale, Australia: Penambul Books.Google Scholar
Jackson, M. G. (1981). A new livestock development strategy for India. World Animal Review No. 37, 2–8.Google Scholar
Johnson, H. D. (1987). Bioclimates and livestock. In Bioclimatology and the Adaptation of Livestock, pp. 316 [Johnson, H. D., editor]. Amsterdam: Elsevier Science Publications.Google Scholar
Jouany, J. P. & Ushida, K. (1990). Protozoa and fibre digestion in the rumen. Paper presented at the VIIth ISRP Satellite Symposium on Regulation of Microbial Metabolism in the Rumen Ecosystem. Hakone, Japan (1989). (In the Press.)Google Scholar
Juul-Nielson, J. (1981). Nutritional principles and productive capacity of the Danish straw-mix system for ruminants. In Maximum Livestock Production from Minimum Land, pp. 287299 [Jacksoň, M. G., Dolberg, F., Haque, M. and Saadullah, M., editors]. Mymensingh, Bangladesh: Bangladesh Agricultural University.Google Scholar
Kandylis, K. (1984). Toxicology of sulfur in ruminants: a review. Journal of Dairy Science 67, 21792187.CrossRefGoogle Scholar
Kay, R. N. B. & Phillipson, A. T. (1964). The influence of urea and other dietary supplements on the nitrogen content of the digesta passing to the duodenum of hay-fed sheep. Proceedings of the Nutrition Society 23, xlvi Abstr.Google Scholar
Kellaway, R. C. & Leibholz, J. (1981). Effects of nitrogen supplements on intake and utilization of low quality forages. In Recent Advances in Animal Nutrition in Australia – 1981, pp. 6673 [Farrell, D. J., editor]. Armidale, Australia: University of New England Publishing Unit.Google Scholar
Kennedy, P. M., Christopherson, R. J. & Milligan, L. P. (1986). Digestive responses to cold. In Control of Digestion and Metabolism in Ruminants, pp. 285306 [Milligan, L. P., Grovum, W. L. and Dobson, A., editors]. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Krebs, G. & Leng, R. A. (1984). The effect of supplementation with molasses/urea blocks on ruminal digestion. Proceedings of the Australian Society of Animal Production 15, 704.Google Scholar
Krebs, G., Leng, R. A. & Nolan, J. V. (1989). Effect on bacterial kinetics in the rumen of eliminating rumen protozoa or supplementing with soyabean meal or urea in sheep on a low protein fibrous feed. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 199210 [Nolan, J. V., Leng, R. A. and Demeyer, D. I., editors]. Armidale, Australia: Penambul Books.Google Scholar
Kronfeld, D. S. (1976). The potential importance of the proportions of glucogenic, lipogenic and aminogenic nutrients in regard to the health and productivity of dairy cows. Advances in Animal Physiology and Animal Nutrition 7, 526.Google Scholar
Kunju, P. J. G. (1986). Urea molasses block lick: a feed supplement for ruminants. In Rice Straw And Related Feeds In Ruminant Rations, pp. 261274 [Ibrahim, M. N. M. and Schiere, J. B., editors]. Wageningen: Pudoe.Google Scholar
Lee, G. J., Hennessy, D. W., Nolan, J. V. & Leng, R. A. (1987). Responses to nitrogen and maize supplements by young cattle offered a low-quality pasture hay. Australian Journal of Agricultural Research 38, 195207.CrossRefGoogle Scholar
Leng, R. A. (1982). Modification of rumen fermentation. In Nutritional Limits to Animal Production from Pastures, pp. 427453 [Hacker, J. B., editor]. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Leng, R. A. (1989). Some factors influencing the efficiency of feed utilization by ruminants with special reference to the tropics. In Recent Advances in Animal Nutrition in Australia 1989, pp. 7585 [Farrell, D. J., editor]. University of New England, Armidale, Australia: Department of Biochemistry, Microbiology and Nutrition.Google Scholar
Leng, R. A. (1990). Recent advances in applied aspects of ruminant physiology and nutrition. Paper presented at VIIth International Symposium on Ruminant Physiology Sendai, Japan. (In the Press.)Google Scholar
Leng, R. A. & Kunju, P. J. (1990). Development of feeding strategies for improving milk production in India from milch animals owned by small-farmers. In Proceedings from the Final Co-ordinated Meeting of ‘The Use of Nuclear Techniques to Improve Domestic Buffalo Production in Asia’ (1988). Vienna, Austria: International Atomic Energy Agency. (In the Press.)Google Scholar
Leng, R. A. & Nolan, J. V. (1984). Nitrogen metabolism in the rumen. Journal of Dairy Science 67, 10721089.CrossRefGoogle ScholarPubMed
Leng, R. A., Nolan, J. V. & Kempton, T. J. (1977). Non-protein nitrogen and bypass proteins in ruminant diets. Australian Meat Research Committee Review 33 (November), 121.Google Scholar
Lindsay, J. A. & Loxton, I. D. (1981). Supplementation of tropical forage diets with protected proteins. In Recent Advances in Animal Nutrition in Australia, p1AAbstr. [Farrell, D. J., editor]. Armidale, Australia: University of New England Publishing Unit.Google Scholar
Lindsay, J. A., Mason, G. W. J. & Toleman, M. A. (1982). Supplementation of pregnant cows with protected proteins when fed tropical forage diets. Proceedings of the Australian Society of Animal Production 14, 6768.Google Scholar
McAllan, A. B., Cockburn, J. E., Williams, A. P. & Smith, R. H. (1988). The degradation of different protein supplements in the rumen of steers and the effects of these supplements on carbohydrate digestion. British Journal of Nutrition 60, 669682.CrossRefGoogle ScholarPubMed
McAllan, A. B. & Griffith, E. S. (1987). The effects of different sources of nitrogen supplementation on the digestion of fibre components in the rumen of steers. Animal Feed Science and Technology 17, 6573.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1983). Factors influencing the digestion of dietary carbohydrates between the mouth and abomasum of steers. British Journal of Nutrition 50, 445454.CrossRefGoogle ScholarPubMed
McDowell, L., Conrad, J. H. & Ellis, G. L. (1984). Mineral deficiencies and imbalances and their diagnosis. In Herbivore Nutrition in the Subtropics and Tropics, pp. 6788 [Gilchrist, F. M. C. and Mackie, R. I., editors]. Craighall, South Africa: The Science Press.Google Scholar
Maeng, W. J., Chang, M. B., Yun, H. S. & Choi, I. (1989). Dilution rates on the efficiency of rumen microbial growth in continuous culture. Asian–Australasian Journal of Animal Science 2, 477480.CrossRefGoogle Scholar
Maeng, W. J., van Nevel, C. J., Baldwin, R. L. & Morris, J. G. (1976). Rumen microbial growth rates and yields: effect of amino acids and protein. Journal of Dairy Science 59, 6879.CrossRefGoogle Scholar
Minson, D. L. (1982). Effects of chemical and physical composition of herbage eaten upon intake. In Nutritional Limits to Animal Production from Pastures, pp. 167182 [Hacker, J. B., editor]. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Ndlovu, L. R. & Buchanan-Smith, J. G. (1985). Utilisation of poor quality roughages by sheep: effects of alfalfa supplementation on ruminal parameters, fiber digestion and rate of passage from the rumen. Canadian Journal of Animal Science 65, 693703.CrossRefGoogle Scholar
Nolan, J. V., Leng, R. A. & Demeyer, D. I. (editors) (1989). The Roles of Protozoa and Fungi in Ruminant Digestion. Armidale, Australia: Penambul Books.Google Scholar
Ørskov, E. R. (1970). Nitrogen utilization by the young ruminant. In Proceedings of the Fourth Nutrition Conference for Feed Manufacturers, pp. 2035 [Swan, H. and Lewis, D., editors]. London: J. and A. Churchill.Google Scholar
Ørskov, E. R. & Allen, D. M. (1966). Utilization of salts of volatile fatty acids by growing sheep. I. Acetate, propionate and butyrate as sources of energy for young growing lambs. British Journal of Nutrition 20, 295305.CrossRefGoogle ScholarPubMed
Ørskov, E. R. & Fraser, C. (1975). The effects of processing of barley-based supplements on rumen pH, rate of digestion and voluntary intake of dried grass in sheep. British Journal of Nutrition 34, 493500.CrossRefGoogle ScholarPubMed
Ørskov, E. R., Fraser, C., Mason, V. C. & Mann, S. O. (1970). Influence of starch digestion in the large intestine of sheep on caecal fermentation, caecal microflora and faecal nitrogen excretion. British Journal of Nutrition 24, 671682.CrossRefGoogle ScholarPubMed
Ørskov, E. R. & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science 92, 499503.CrossRefGoogle Scholar
Perdok, H. B. (1987). Ammoniated rice straw as a feed for growing cattle. PhD Thesis, University of New England, Armidale, Australia.Google Scholar
Perdok, H. B., Leng, R. A., Bird, S. H., Habib, G. & Van Houtert, M. (1988). Improving livestock production from straw-based diets. In Increasing Small Ruminant Productivity in Semi-arid Areas, pp. 8191 [Thomson, E. F. and Thomson, F. S., editors]. Syria: International Center for Agricultural Research in Dry Areas.CrossRefGoogle Scholar
Pethick, D. W. (1984). Energy metabolism in skeletal muscles. In Ruminant Physiology: Concepts and Consequences, pp. 277287 [Baker, S. K., Gawthorne, J. M., Macintosh, J. B. and Purser, D. B., editors]. Perth: University of Western Australia.Google Scholar
Pettipher, G. L. & Latham, M. J. (1979). Characteristics of enzymes produced by Ruminococcus flavefaciens which degrade plant cell walls. Journal of General Microbiology 110, 2127.CrossRefGoogle Scholar
Pittman, K. A., Lakshmanan, S. & Bryant, M. P. (1967). Oligopeptide uptake by Bacteroides ruminicola. Journal of Bacteriology 93, 14991508.CrossRefGoogle ScholarPubMed
Preston, T. R. & Leng, R. A. (1987). Matching Ruminant Production Systems With Available Resources In The Tropics And Subtropics. Armidale, Australia: Penambul Books.Google Scholar
Reis, P. J. & Schinckel, P. G. (1961). Nitrogen utilization and wool production in sheep. Australian Journal of Agricultural Research 12, 335352.CrossRefGoogle Scholar
Romulo, B., Bird, S. H. & Leng, R. A. (1989). Combined effects of defaunation and protein supplementation on intake, digestibility, N retention and fungi counts in sheep fed straw based diets. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 285288 [Nolan, J. V., Leng, R. A. and Demeyer, D. I., editors]. Armidale, Australia: Penambul Books.Google Scholar
Russell, J. B. (1983). Fermentation of peptides by Bacteroides ruminicola B14. Applied and Environmental Microbiology 45, 15661574.CrossRefGoogle ScholarPubMed
Ryle, M. & Ørskov, E. R. (1987). Rumen ciliates and tropical feeds. World Animal Review No. 64, 21–30.Google Scholar
Saadullah, M. (1984). Studies on utilization of rice straw by cattle. PhD Thesis, Royal Veterinary University, Copenhagen, Denmark.Google Scholar
Satter, L. D. & Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. British Journal of Nutrition 32, 194208.CrossRefGoogle ScholarPubMed
Silva, A. T. & Ørskov, E. R. (1988). The effect of five different supplements on the degradation of straw in sheep given untreated barley straw. Animal Feed Science and Technology 19, 289298.CrossRefGoogle Scholar
Silva, A. T., Greenhalgh, J. F. D. & Ørskov, E. R. (1989). Influence of ammonia treatment and supplementation on the intake, digestibility and weight gain of sheep and cattle on barley straw diets. Animal Production 48, 99108.CrossRefGoogle Scholar
Smith, R. H. (1984). Minerals and rumen function references. In Nuclear Techniques in Tropical Animal Diseases and Nutrition Disorders, pp. 7996. Vienna, Austria: International Atomic Energy Agency.Google Scholar
Smith, R. H. (1989). Protein metabolism in the rumen. In Advanced Nutrition for Developing Countries, pp. 158177 [Singh, U. B., editor]. Ghaziabad, India: Indo-Vision Pvt Ltd.Google Scholar
Smith, R. H., Grantley-Smith, M. P., Merry, R. J., McAllan, A. B., Oldham, J. D. & Salter, D. N. (1987). Supply of N compounds to the rumen and their subsequent metabolism and nutritional value. In Isotope Aided Studies on Non-Protein-Nitrogen on Agro-Industrial Byproducts Utilization by Ruminants, pp. 4162. Vienna: IAEA.Google Scholar
Soetanto, H. (1986). Studies on the role of rumen anaerobic fungi and protozoa in fibre digestion. MRSc Thesis, University of New England, Armidale, Australia.Google Scholar
Sudana, I. B. & Leng, R. A. (1986). Effects of supplementing a wheat straw diet with urea or a urea-molasses block and/or cottonseed meal on intake and liveweight change of lambs. Animal Feed Science and Technology 16, 2535.CrossRefGoogle Scholar
Suttle, N. F. (1987). The absorption, retention and function of minor nutrients. In The Nutrition of Herbivores, pp. 330361 [Hacker, J. B. and Ternouth, J. H., editors]. London: Academic Press.Google Scholar
Thonney, M. L., Touchberry, R. W., Boodrich, R. D. & Meiske, J. C. (1976). Intraspecies relationship between fasting heat production and body weight: a re-evaluation of W0.75. Journal of Animal Science 43, 692704.CrossRefGoogle Scholar
Ushida, K., Jouany, J. P., Kayouli, C. & Demeyer, D. I. (1989). Effect of defaunation on fibre digestion in sheep fed NH3-treated straw based diets. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 307308 [Nolan, J. V., Leng, R. A. and Demeyer, D. I., editors]. Armidale, Australia: Penambul Books.Google Scholar
Veira, D. M., Ivan, M. & Jui, P. Y. (1983). Rumen ciliate protozoa: effects on digestion in the stomach of sheep. Journal of Dairy Science 66, 10151022.CrossRefGoogle ScholarPubMed
Wanapat, M., Duangchan, S., Pongpairote, S., Anakewit, T. & Tongpanung, P. (1986). Effects of various levels of concentrate fed with urea-treated rice straw for purebred American Brahman yearling cattle. In Ruminant Feeding Systems Utilizing Fibrous Agricultural Residues – 1985, pp. 149153 [Dixon, R. M., editor]. Canberra, Australia: Australian International Development Programme.Google Scholar
Webster, A. J. F. (1989). Bioenergetics, bioengineering and growth. Animal Production 48, 249269.Google Scholar
Wilson, J. R. & Minson, D. J. (1980). Prospects for improving the digestibility and intake of tropical grasses. Tropical Grasslands 14, 253259.Google Scholar
Young, B. A. (1983). Ruminant cold stress: effect on production. Journal of Animal Science 57, 16011607.CrossRefGoogle ScholarPubMed