Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T07:19:50.531Z Has data issue: false hasContentIssue false

Essential and Conditionally-Essential Nutrients in Clinical Nutrition

Published online by Cambridge University Press:  14 December 2007

George K. Grimble
Affiliation:
Department of Gastroenterology & Nutrition, Central Middlesex Hospital, Acton Lane, London NW10 7NS
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Aisaki, K., Gross, S. S., Griffith, O. W. & Levi, R. (1989). NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochemical and Biophysical Research Communications 160, 881886.CrossRefGoogle Scholar
Ardawi, M. S. M., Majzoub, M. F., Kateilah, S. M. & Newsholme, E. A. (1991). Maximal activity of phosphate-dependent glutaminase and glutamine metabolism in septic rats. Journal of Laboratory and Clinical Medicine 118, 2632.Google ScholarPubMed
Ashford, A. J. & Pain, V. M. (1986). Effect of diabetes on the rates of synthesis and degradation of ribosomes in rat muscle and liver in vivo. Journal of Biological Chemistry 261, 40594065.CrossRefGoogle ScholarPubMed
Austgen, T. R., Chen, M. K., Flynn, T. C. & Souba, W. W. (1991). The effects of endotoxin on the splanchnic metabolism of glutamine and related substrates. Journal of Trauma 31, 742751.CrossRefGoogle ScholarPubMed
Barbul, A. (1986). Arginine: biochemistry, physiology, and therapeutic implications. Journal of Parenteral and Enteral Nutrition 10, 227238.CrossRefGoogle ScholarPubMed
Barbul, A., Lazarou, S. A., Efron, D. T., Wasserkrug, H. L. & Efron, G. (1990). Arginine enhances wound healing and lymphocyte immune responses in humans. Surgery 108, 331337.Google ScholarPubMed
Bates, P. C., Grimble, G. K., Sparrow, M. P. & Millward, D. J. (1983). Myofibrillar protein turnover. Synthesis of protein bound 3-methyl histidine, actin, myosin heavy-chain and aldolase in rat skeletal muscle in the fed and fasted state. Biochemical Journal 214, 593605.CrossRefGoogle Scholar
Batshaw, M. L., Walser, M. & Brusilow, S. W. (1980). Plasma α-ketoglutarate in urea cycle enzymopathies and its role as a harbinger of hyperammonemic coma. Pediatric Research 14, 13161319.CrossRefGoogle ScholarPubMed
Bessey, P. Q., Watters, J. M., Aoki, T. T. & Wilmore, D. W. (1984). Combined hormonal infusion simulates the metabolic response to injury. Annals of Surgery 200, 264281.CrossRefGoogle ScholarPubMed
Binder, H. J. & Mehta, P. (1989). Short-chain fatty acids stimulate active sodium and chloride absorption in vitro in the rat distal colon. Gastroenterology 96, 989996.CrossRefGoogle ScholarPubMed
Boross, M., Kinsella, J., Cheng, L. & Sacktor, B. (1986). Glucocorticoids and metabolic acidosis-induced renal transports of inorganic phosphate, calcium, and NH+4. American Journal of Physiology 250, F827F833.Google Scholar
Boughton-Smith, N. K., Deakin, A. M. & Whittle, B. J. (1992). Actions of nitric oxide on the acute gastrointestinal damage induced by PAF in the rat. Agents & Actions (Supplement), C3C9.CrossRefGoogle ScholarPubMed
Brocker, P., Sassard, F. & Lods, J. C.yy (1985). [Effect of ornithine α-ketoglutarate on blood levels of albumin and transferrin in undernourished elderly people in hospital]. Revue de Geriatrie 10, 233236.Google Scholar
Brosnan, J. T. (1987). The 1986 Borden Award Lecture. The role of the kidney in amino acid metabolism and nutrition. Canadian Journal of Physiology and Pharmacology 65, 23552362.CrossRefGoogle ScholarPubMed
Burge, J., McKnight, T., Mirtallo, J., Vargo, A., Choban, P. & Flancbaum, L. (1992). Urinary urea plus ammonia approximates total urinary nitrogen in patients receiving nutrition support. Journal of Parenteral and Enteral Nutrition 16 (Suppl.) 26S.Google Scholar
Burrin, D. G., Shulman, R. J., Storm, M. C. & Reeds, P. J. (1991). Glutamine or glutamic acid effects on intestinal growth and disacharidase activity in infant piglets receiving total parenteral nutrition. Journal of Parenteral and Enteral Nutrition 15, 262266.CrossRefGoogle ScholarPubMed
Calignano, A., Whittle, B. J. R., Di Rosa, M. & Moncada, S. (1992). Involvement of endogenous nitric oxide in the regulation of rat intestinal motility in vivo. European Journal of Pharmacology 229, 273276.CrossRefGoogle ScholarPubMed
Chacko, A. & Cummings, J. H. (1988). Nitrogen losses from the human small bowel: obligatory losses and the effect of physical form of food. Gut 29, 809815.CrossRefGoogle ScholarPubMed
Cooper, H. L. (1972). RNA metabolism during lymphocyte activation. Transplantation Reviews 11, 338.Google ScholarPubMed
Crissinger, K. D. & Burney, D. L. (1992). Influence of luminal nutrient composition on hemodynamics and oxygenation in developing intestine. American Journal of Physiology 263, G254G260.Google ScholarPubMed
Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. E. & MacFarlane, G. T. (1987). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 12211227.CrossRefGoogle ScholarPubMed
Cynober, L. (1991). Ornithine α-ketoglutarate in nutritional support. Nutrition 7, 313322.Google ScholarPubMed
Daly, J. M., Lieberman, M. D., Goldfine, J., Shou, J., Weintraub, F., Rosato, E. F. & Lavin, P. (1992). Enteral nutrition with supplemental arginine, RNA, and omega-3 fatty acids in patients after operation: immunologic, metabolic, and clinical outcome. Surgery 112, 5667.Google ScholarPubMed
Daly, J. M., Reynolds, J., Thom, A., Kinsley, L., Dietrick-Gallagher, M., Shou, J. & Ruggieri, B. (1988). Immune and metabolic effects of arginine in the surgical patient. Annals of Surgery 208, 512523.CrossRefGoogle ScholarPubMed
Danielsen, M. & Jackson, A. A. (1992). Limits of adaptation to a diet low in protein in normal man: urea kinetics. Clinical Science 83, 103108.CrossRefGoogle ScholarPubMed
Deutz, N. E. P., Dejong, C. H., Athanasas, G. & Soeters, P. B. (1992 a). Partial enterectomy in the rat does not diminish muscle glutamine production. Metabolism 41, 13431350.CrossRefGoogle Scholar
Deutz, N. E. P., Reijven, P. L. M., Athanasas, G. & Soeters, P. B. (1992 b). Post-operative changes in hepatic, intestinal, splenic and muscle fluxes of amino acids in pigs. Clinical Science 83, 607614.CrossRefGoogle ScholarPubMed
D'Mello, J. P. F. (1982). Utilization of dietary purines and pyrimidines by non-ruminant animals. Proceedings of the Nutrition Society 41, 301308.CrossRefGoogle ScholarPubMed
Egan, C. J. & Rennie, M. J. (1986). Relative importance of luminal and vascular amino acids for protein synthesis in rat jejunum. Journal of Physiology 378, 49P.Google Scholar
Elia, M. & Livesey, G. (1983). Effects of ingested steak and infused leucine on forelimb metabolism in man and the fate of the carbon skeletons and amino groups of branched-chain amino acids. Clinical Science 64, 517526.CrossRefGoogle ScholarPubMed
Elsair, J., Poey, J., Isaad, H., Reggali, M., Bekri, T., Hattab, F. & Spinner, C. (1978). Effect of arginine chlorhydrate on nitrogen balance during the three days following routine surgery in man. Biomedical Express 29, 312317.Google Scholar
Fanslow, W. C., Kulkarni, A. D., Van Buren, C. T. & Rudolph, F. B. (1988). Effect of nucleotide restriction and supplementation on resistance to experimental murine candidiasis. Journal of Parenteral and Enteral Nutrition 12, 4952.CrossRefGoogle ScholarPubMed
Fernandez Lopez, J. A., Casado, J., Argiles, J. M. & Alemany, M. (1992). Intestinal handling of a glucose gavage by the rat. Molecular & Cellular Biochemistry 113, 4353.CrossRefGoogle ScholarPubMed
Fiddian Green, R. G. & Baker, S. (1991). Nosocomial pneumonia in the critically ill: product of aspiration or translocation? Critical Care Medicine 19, 763769.CrossRefGoogle ScholarPubMed
Fine, A., Bennett, F. I. & Alleyne, G. A. O. (1978). Effects of acute acid-base alterations on glutamine metabolism and renal ammoniagenesis in the dog. Clinical Science and Molecular Medicine 54, 503508.Google ScholarPubMed
Fink, M. P. (1991). Gastrointestinal mucosal injury in experimental models of shock, trauma, and sepsis. Critical Care Medicine 19, 627641.CrossRefGoogle ScholarPubMed
Flynn, W. J. J., Gosche, J. R. & Garrison, R. N. (1992). Intestinal blood flow is restored with glutamine or glucose suffusion after hemorrhage. Journal of Surgical Research 52, 499504.CrossRefGoogle ScholarPubMed
Fong, Y. M., Albert, J. D., Tracey, K., Hesse, D. G., Calvano, S., Matthews, D. E. & Lowry, S. F. (1991). The influence of substrate background on the acute metabolic response to epinephrine and cortisol. Journal of Trauma 31, 14671476.CrossRefGoogle ScholarPubMed
Fox, A. D., Kripke, S. A., de Paula, J., Berman, J. M., Settle, R. G. & Rombeau, J. L. (1988). Effect of a glutamine-supplemented enteral diet on methotrexate-induced enterocolitis. Journal of Parenteral and Enteral Nutrition 12, 325331.CrossRefGoogle ScholarPubMed
Fuller, S. J., Gaitanaki, C. J. & Sugden, P. H. (1989). Effects of increasing extracellular pH on protein synthesis and protein degradation in the perfused working rat heart. Biochemical Journal 259, 173179.CrossRefGoogle ScholarPubMed
Furst, P., Albers, S. & Stehle, P. (1987). Stress-induced intracellular glutamine depletion: the potential use of glutamine-containing peptides in parenteral nutrition. In Dipeptides as New Substrates in Nutation Therapy, pp. 117136 [Adibi, S. A., Fekl, W. and Oehmke, M., editors]. Munich: Karger.Google Scholar
Garibotto, G., Russo, R., Sala, M. R., Ancarani, P., Robaudo, C., Sofia, A., Deferrari, G. & Tizianello, A. (1992). Muscle protein turnover and amino acid metabolism in patients with chronic renal failure. Mineral and Electrolyte Metabolism 18, 217221.Google ScholarPubMed
Gaull, G., Sturman, J. A. & Raiha, N. C. R. (1972). Development of mammalian sulfur metabolism: absence of cystathionase in human fetal tissue. Pediatric Research 6, 538547.CrossRefGoogle Scholar
Genchev, D. D., Kermekchiev, M. B. & Hadjiolov, A. A. (1980). Free pyrimidine nucleotide pool of Ehrlich ascites-tumour cells. Compartmentation with respect to the synthesis of heterogeneous nuclear RNA and precursors to ribosomal RNA. Biochemical Journal 188, 8590.CrossRefGoogle Scholar
Ghiggeri, G. M., Ginevri, F., Cercignani, G., Oleggini, R., Garberi, A., Candiano, G., Atieri, P. & Gusmano, R. (1990). Effect of dietary protein restriction on renal purines and purine-metabolizing enzymes in adriamycin nephrosis in rats: a mechanism for protection against acute proteinuria involving xanthine oxidase inhibition. Clinical Science 79, 647656.CrossRefGoogle ScholarPubMed
Giesecke, D. & Tiemeyer, W. (1982). Availability and metabolism of purines of single-cell proteins in monogastric animals. Proceedings of the Nutrition Society 41, 319327.CrossRefGoogle ScholarPubMed
Giesecke, K., Magnusson, I., Ahlberg, M., Hagenfeldt, L. & Wahren, J. (1989). Protein and amino acid metabolism during early starvation as reflected by excretion of urea and methylhistidines. Metabolism 38, 11961200.CrossRefGoogle ScholarPubMed
Golden, M. H. N., Jahoor, P. & Jackson, A. A. (1982). Glutamine production rate and its contribution to urinary ammonia in normal man. Clinical Science 62, 299305.CrossRefGoogle ScholarPubMed
Goldstein, L., Boylan, J. M. & Boyd, T. A. (1977). α-Ketoglutarate regulation of glutamine transport and deamidation in renal mitochondria. Current Problems in Clinical Biochemistry 8, 273279.Google ScholarPubMed
Goody, H. E. & Ellem, K. A. O. (1975). Nutritional effect on precursor uptake and compartmentalization of intracellular pools in relation to RNA synthesis. Biochimica et Biophysica Acta 383, 3039.CrossRefGoogle ScholarPubMed
Greife, H. A. & Molnar, S. (1983). [14C tracer studies on the metabolism of nucleic acids in young rats, chickens and piglets. 1. Purine metabolism in young rats]. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 50, 7991.CrossRefGoogle Scholar
Greife, H. A., Molnar, S., Bos, T., Gussmann, M. & Günther, K.-D. (1984). [N-metabolism in growing pigs receiving a bacterial protein supplement (Alcaligenes eutrophus) instead of soyabean meal.] Archiv für Tierernährung 34, 179190.CrossRefGoogle Scholar
Grimble, G. K. (1981). RNA Metabolism in Skeletal Muscle. PhD Thesis, University of London.Google Scholar
Grimble, G. K., Coudray-Lucas, C., Payne-James, J. J., Cynober, L., Ziegler, F. & Silk, D. B. A. (1992). Augmentation of plasma arginine and glutamine by ornithine α-ketoglutarate in healthy, enterally-fed volunteers. Proceedings of the Nutrition Society 51, 119A.Google Scholar
Grimble, G. K. & Millward, D. J. (1977). The measurement of ribosomal ribonucleic acid synthesis in rat liver and skeletal muscle in vivo. Biochemical Society Transactions 5, 913916.CrossRefGoogle ScholarPubMed
Grimble, G. K., West, M. F. E., Acuti, A. B. C., Rees, R. G., Hunjan, M. K., Webster, J. D., Frost, P. G. & Silk, D. B. A. (1988). Assessment of an automated chemiluminescence nitrogen analyzer for routine use in clinical nutrition. Journal of Parenteral and Enteral Nutrition 12, 100106.CrossRefGoogle ScholarPubMed
Gross, C. J., Stiles, J. E. & Savaiano, D. A. (1988). Effect of nutritional state and allopurinol on purine metabolism in the rat small intestine. Biochimica et Biophysica Acta 966, 168175.CrossRefGoogle ScholarPubMed
Guedon, C., Schmitz, J., Lerebours, E., Metayer, J., Audran, E., Hemet, J. & Colin, R. (1986). Decreased brush border hydrolase activities without gross morphologic changes in human intestinal mucosa after prolonged total parenteral nutrition of adults. Gastroenterology 90, 373378.CrossRefGoogle ScholarPubMed
Guenter, P. A., Settle, R. G., Perlmutter, S., Marino, P. L., DeSimone, G. A. & Rolandelli, R. H. (1991). Tube-feeding related diarrhea in acutely-ill patients. Journal of Parenteral and Enteral Nutrition 15, 277280.CrossRefGoogle ScholarPubMed
György, P. (1971). The uniqueness of human milk: biochemical aspects. American Journal of Clinical Nutrition 24, 970975.CrossRefGoogle ScholarPubMed
Hammarqvist, F., Stromberg, C., von der Decken, A., Vinnars, E. & Wernerman, J. (1992). Biosynthetic human growth hormone preserves both muscle protein synthesis and the decrease in muscle-free glutamine, and improves whole-body nitrogen economy after operation. Annals of Surgery 216, 184191.CrossRefGoogle ScholarPubMed
Hammarqvist, F., Wernerman, J., Ali, R., von der Decken, A. & Vinnars, E. (1988). Effects of glutamine supplementation to total parenteral nutrition after elective abdominal surgery. Clinical Nutrition 7 (Suppl.), 36.Google Scholar
Hammarqvist, F., Wernerman, J., Ali, R., von der Decken, A. & Vinnars, E. (1989 a). Addition of glutamine to total parenteral nutrition after elective abdominal surgery spares free glutamine in muscle, counteracts the fall in muscle protein synthesis, and improves nitrogen balance. Annals of Surgery 209, 455461.CrossRefGoogle ScholarPubMed
Hammarqvist, F., Wernerman, J. & Vinnars, E. (1989 b). Alpha-ketoglutarate added to post-operative total parenteral nutrition improves nitrogen balance and reduces the loss of free glutamine in skeletal muscle. Journal of Parenteral and Enteral Nutrition 13 (Suppl.), 6S.Google Scholar
Hammer, H. F., Santa Ana, C. A., Schiller, L. R. & Fordtran, J. S. (1989). Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose. Journal of Clinical Investigation 84, 10561062.CrossRefGoogle ScholarPubMed
Haussinger, D., Lamers, W. H. & Moorman, A. F. (1992). Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme 46, 7293.CrossRefGoogle Scholar
Hegarty, J. E., Fairclough, P. D., Clark, M. L. & Dawson, A. M. (1981). Jejunal water and electrolyte secretion induced by L-arginine in man. Gut 22, 108113.CrossRefGoogle ScholarPubMed
Helms, R. A., Christensen, M. L., Mauer, E. C. & Storm, M. C. (1987). Comparison of a pediatric versus standard amino acid formulation in preterm neonates requiring parenteral nutrition. Journal of Pediatrics 110, 466470.CrossRefGoogle ScholarPubMed
Henning, S. J. & Hird, F. J. R. (1970). Concentrations and metabolism of volatile fatty acids in the fermentative organs of two species of kangaroo and the guinea-pig. British Journal of Nutrition 24, 145155.CrossRefGoogle Scholar
Hill, J. M. (1975). Ribosomal RNA metabolism during renal hypertrophy. Evidence of decreased degradation of newly synthesized ribosomal RNA. Journal of Cell Biology 64, 260265.CrossRefGoogle ScholarPubMed
Hill, J. M., Ab, G. & Malt, R. A. (1974). Ribonucleic acid labelling and nucleotide pools during compensatory renal hypertrophy. Biochemical Journal 144, 447453.CrossRefGoogle ScholarPubMed
Iijima, S., Tsujinaka, T., Kido, Y., Hayashida, Y., Ishida, H., Homma, T., Yokoyama, H. & Mori, T. (1993). Intravenous administration of nucleosides and a nucleotide mixture diminishes intestinal mucosal atrophy induced by total parenteral nutrition. Journal of Parenteral and Enteral Nutrition 17, 265270.Google Scholar
Itoh, H., Kishi, T. & Chibata, I. (1973). Comparative effects of casein and amino acid mixture simulating casein on growth and food intake in rats. Journal of Nutrition 103, 17091715.CrossRefGoogle Scholar
Jackson, A. A. (1983). Aminoacids: essential and non-essential? Lancet i, 10341037.CrossRefGoogle Scholar
Jackson, A. A., Picou, D. & Landman, J. (1984). The non-invasive measurement of urea kinetics in normal man by a constant infusion of 15N15N-urea. Human Nutrition: Clinical Nutrition 38, 339354.Google Scholar
Jahoor, F., Jackson, A. A. & Golden, M. H. N. (1988). In vivo metabolism of nitrogen precursors for urea synthesis in the postprandial rat. Annals of Nutrition & Metabolism 32, 240244.CrossRefGoogle ScholarPubMed
Jaziri, M., Migliore-Samour, D., Casabianca-Pignède, M.-R., Keddad, K., Morgat, J. L. & Jollès, P. (1992). Specific binding sites on human phagocytic blood cells for Gly-Leu-Phe and Val-Glu-Pro-Ile-Pro-Tyr, immunostimulating peptides from human milk proteins. Biochimica et Biophysica Acta 1160, 251261.CrossRefGoogle ScholarPubMed
Jeevanandam, M., Ali, M. R. & Petersen, S. R. (1992). Substrate and hormonal changes due to dietary supplementation with ornithine α-ketoglutarate (OKG) in critically ill trauma victims. Clinical Nutrition 11 (Suppl.), 26.CrossRefGoogle Scholar
Jeevanandam, M., Ali, M. R., Ramias, L. & Schiller, W. R. (1991). Efficacy of ornithine α-ketoglutarate (OKG) as a dietary supplement in growing rats. Clinical Nutrition 10, 155161.CrossRefGoogle Scholar
Jepson, M. M., Bates, P. C., Broadbent, P., Pell, J. M. & Millward, D. J. (1988). Relationship between glutamine concentration and protein synthesis in rat skeletal muscle. American Journal of Physiology. 255, E166E172.Google ScholarPubMed
Jimenez, J., Boza, J., Suarez, M. D. & Gil, A. (1992). Changes in fatty acid profiles of red blood cell membranes mediated by dietary nucleotides in weanling rats. Journal of Pediatric Gastroenterology & Nutrition 14, 293299.Google ScholarPubMed
Karatzas, T., Scopa, S., Tsoni, I., Panagopoulos, K., Spiliopolou, I., Moschos, S., Vagianos, K. & Kalfarentzos, F. (1991). Effect of glutamine on intestinal mucosal integrity and bacterial translocation after abdominal radiation. Clinical Nutrition 10, 199205.CrossRefGoogle ScholarPubMed
Keohane, P. P., Attrill, H., Jones, B. J. M., Brown, B., Frost, P. & Silk, D. B. A. (1983). The roles of lactose and Clostridium difficile in the pathogenesis of enteral feeding associated diarrhoea. Clinical Nutrition 1, 259264.CrossRefGoogle ScholarPubMed
Kies, C. (1972). Nonspecific nitrogen in the nutrition of human beings. Federation Proceedings 31, 11721177.Google ScholarPubMed
King, P. A., Goldstein, L. & Newsholme, E. A. (1983). Glutamine synthetase activity of muscle in acidosis. Biochemical Journal 216, 523525.CrossRefGoogle ScholarPubMed
Kirk, S. J. & Barbul, A. (1990). Role of arginine in trauma, sepsis, and immunity. Journal of Parenteral and Enteral Nutrition 14 (5, Suppl.), 226S229S.CrossRefGoogle ScholarPubMed
Klimberg, V. S., Salloum, R. M., Kasper, M., Plumley, D. A., Dolson, D. J., Hautamaki, R. D., Mendenhall, W. R., Bova, F. C., Bland, K. I., Copeland, E. M. & Souba, W. W. (1990 a). Oral glutamine accelerates healing of the small intestine and improves outcome after whole abdominal radiation. Archives of Surgery 125, 10401047.CrossRefGoogle ScholarPubMed
Klimberg, V. S., Souba, W. W., Dolson, D. J., Salloum, R. M., Hautamaki, R. D., Plumley, D. A., Mendenhall, W. M., Bova, F. J., Khan, S. R., Hackett, R. L., Bland, K. I. & Copeland, E. M. (1990 b). Prophylactic glutamine protects the intestinal mucosa from radiation injury. Cancer 66, 6268.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Konstantinides, F. N., Konstantinides, N. N., Li, J. C., Myaya, M. E. & Cerra, F. B. (1991). Urinary urea nitrogen: too insensitive for calculating nitrogen balance studies in surgical clinical nutrition. Journal of Parenteral and Enteral Nutrition 15, 189193.CrossRefGoogle ScholarPubMed
Koruda, M. J., Rolandelli, R. H., Settle, R. G., Zimmaro, D. M. & Rombeau, J. L. (1988). Effect of parenteral nutrition supplemented with short-chain fatty acids on adaptation to massive small bowel resection. Gastroenterology 95, 715720.CrossRefGoogle ScholarPubMed
Korelitz, B. I., Cheskin, L. J., Sohn, N. & Sommers, S. C. (1984). Proctitis after fecal diversion in Crohn's disease and its elimination with reanastomosis: implications for surgical management. Gastroenterology 87, 710713.CrossRefGoogle ScholarPubMed
Krassowski, J., Rousselle, J., Maeder, E. & Felber, J-P. (1981). The effect of ornithine α-ketoglutarate on insulin and glucagon secretion in normal subjects. Acta Endocrinologica 98, 252255.Google ScholarPubMed
Kripke, S. A., Fox, A. D., Berman, J. M., Settle, R. G. & Rombeau, J. L. (1989). Stimulation of intestinal mucosal growth with intracolonic infusion of short-chain fatty acids. Journal of Parenteral and Enteral Nutrition 13, 109116.CrossRefGoogle ScholarPubMed
Kruh, J., Defer, N. & Tichonicky, L. (1991). Molecular and cellular effects of sodium butyrate. In Short-chain Fatty Acids: metabolism and clinical importance (10th Ross conference on medical research), pp. 4550 [Roche, A. F., editor]. Columbus, OH: Ross Laboratories.Google Scholar
Kubes, P. (1992). Nitric oxide modulates epithelial permeability in the feline small intestine. American Journal of Physiology 262, G1138G1142.Google ScholarPubMed
Kubes, P. (1993). Ischemia-reperfusion in feline small intestine: a role for nitric oxide. American Journal of Physiology 264, G143G149.Google ScholarPubMed
Kulkarni, A. D., Fanslow, W. C., Rudolph, F. B. & Van Buren, C. T. (1986). Effect of dietary nucleotides on response to bacterial infections. Journal of Parenteral and Enteral Nutrition 10, 169171.CrossRefGoogle ScholarPubMed
Laidlaw, S. A. & Kopple, J. D. (1987). Newer concepts of the indispensable amino acids. American Journal of Clinical Nutrition 46, 593605.CrossRefGoogle ScholarPubMed
Lambert, P. (1982). Effets de l'α-Cétoglutarate d'ornithine sur les sécrétions d'insuline, d'hormone somatotrope, de glucagon et de cortisol dans la cirrhose alcoolique. PhD Thesis, Université de Montpellier.Google Scholar
Laurent, G. J., Sparrow, M. P. & Millward, D. J. (1978). Turnover of muscle protein in the fowl. 2. Changes in rates of protein synthesis and breakdown during hypertrophy of the anterior and posterior latissimus dorsi muscles. Biochemical Journal 176, 407417.CrossRefGoogle ScholarPubMed
Leander, U., Fürst, P., Vesterberg, K. & Vinnars, E. (1985). Nitrogen sparing effect of ornicetilR in the immediate postoperative state: clinical biochemistry and nitrogen balance. Clinical Nutrition 4, 4351.CrossRefGoogle ScholarPubMed
Lecointre, C. L. & Dailly, R. (1981). [Stimulation of growth hormone by ornithine in pediatric pathology: study on the response of insulin.] Ouest Médical 34, 11971200.Google Scholar
LeLeiko, N. S., Bronstein, A. D., Baliga, B. S. & Munro, H. N. (1983). De novo purine nucleotide synthesis in the rat small and large intestine: effect of dietary protein and purines. Journal of Pediatric Gastroenterology & Nutrition 2, 313319.CrossRefGoogle ScholarPubMed
LeLeiko, N. S., Bronstein, A. D. & Munro, H. N. (1979). Effect of dietary purines on de novo synthesis of purine nucleotides in the small intestinal mucosa. Pediatric Research 13, 403.Google Scholar
Liu, S. Y., Leighton, T., Davis, I., Klein, S., Lippmann, M. & Bongard, F. (1991). Prospective analysis of cardiopulmonary responses to laparoscopic cholecystectomy. Journal of Laparoendoscopic Surgery 1, 241246.CrossRefGoogle ScholarPubMed
Loeb, J. N. & Yeung, L. L. (1975). Synthesis and degradation of ribosomal RNA in regenerating liver. Journal of Experimental Medicine 142, 575587.CrossRefGoogle ScholarPubMed
Losman, M. J. & Harley, E. H. (1978). Evidence for compartmentation of uridine nucleotide pools in rat hepatoma cells. Biochimica et Biophysica Acta 521, 762769.CrossRefGoogle ScholarPubMed
Lowry, M. & Ross, B. D. (1980). Activation of oxoglutarate dehydrogenase in the kidney in response to acute acidosis. Biochemical Journal 190, 771780.CrossRefGoogle ScholarPubMed
Lund, P. (1980). Glutamine metabolism in the rat. FEBS Letters 117 (Suppl.), K86K92.CrossRefGoogle ScholarPubMed
MacDonald, M. L., Rogers, Q. R. & Morris, J. G. (1984). Nutrition of the domestic cat, a mammalian carnivore. Annual Review of Nutrition 4, 521562.CrossRefGoogle ScholarPubMed
May, R. C., Kelly, R. A. & Mitch, W. E. (1986). Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism. Journal of Clinical Investigation 77, 614621.CrossRefGoogle ScholarPubMed
Merimee, T. J., Rabinowitz, D. & Fineberg, S. E. (1969). Arginine-initiated release of human growth hormone. New England Journal of Medicine 280, 14341438.CrossRefGoogle ScholarPubMed
Midtvedt, A.-C. & Midtvedt, T. (1992). Production of short chain fatty acids by the intestinal microflora during the first 2 years of human life. Journal of Pediatric Gastroenterology & Nutrition 15, 395403.Google ScholarPubMed
Miller, M. J., Zhang, X. J., Sadowska Krowicka, H., Chotinaruemol, S., McIntyre, J. A., Clark, D. A. & Bustamante, S. A. (1993). Nitric oxide release in response to gut injury. Scandanavian Journal of Gastroenterology 28, 149154.CrossRefGoogle ScholarPubMed
Millward, D. J., Garlick, P. J., Stewart, R. J. C., Nnanyelugo, D. O. & Waterlow, J. C. (1975). Skeletal-muscle growth and protein turnover. Biochemical Journal 150, 235243.CrossRefGoogle ScholarPubMed
Millward, D. J., Jackson, A. A., Price, G. & Rivers, J. P. W. (1989). Human amino acid and protein requirements: current dilemmas and uncertainties. Nutrition Research Reviews 2, 109132.CrossRefGoogle ScholarPubMed
Moran, B. J. & Jackson, A. A. (1990). 15N-urea metabolism in the functioning human colon: luminal hydrolysis and mucosal permeability. Gut 31, 454457.CrossRefGoogle ScholarPubMed
Morgan, H. E., Siehl, D., Chua, B. H. L. & Lautensack-Belser, N. (1985). Faster protein and ribosome synthesis in hypertrophying heart. Basic Research in Cardiology 80 (Suppl. 2), 115118.Google ScholarPubMed
Moritoki, H., Takeuchi, S., Hisayama, T. & Kondoh, W. (1992). Nitric-oxide synthase responsible for L-arginine-induced relaxation of rat aortic rings in vitro may be an inducible type. British Journal of Pharmacology 107, 361366.CrossRefGoogle ScholarPubMed
Mortensen, F. V., Nielsen, H., Mulvany, M. J. & Hessov, I. (1990). Short chain fatty acids dilate isolated human colonic resistance arteries. Gut 31, 13911394.CrossRefGoogle ScholarPubMed
Munro, H. N. (1964). An introduction to nutritional aspects of protein metabolism. In Mammalian Protein Metabolism, Vol. 2, pp. 339 [Munro, H. N. and Allison, J. B., editors]. New York: Academic Press.CrossRefGoogle Scholar
Nakagawa, I., Takahashi, T., Suzuki, T. & Kobayashi, K. (1963). Amino acid requirements of children: minimal needs of tryptophan, arginine and histidine based on nitrogen balance method. Journal of Nutrition 80, 305310.CrossRefGoogle ScholarPubMed
Newsholme, E. A., Crabtree, B. & Ardawi, M. S. M. (1985). Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Quarterly Journal of Experimental Physiology 70, 473489.CrossRefGoogle ScholarPubMed
Newsholme, E. A. & Parry-Billings, M. (1990). Properties of glutamine release from muscle and its importance for the immune system. Journal of Parenteral and Enteral Nutrition 14 (4, Suppl.), 63S67S.CrossRefGoogle ScholarPubMed
Newsholme, P. & Newsholme, E. A. (1989). Rates of utilization of glucose, glutamine and oleate and formation of end-products by mouse peritoneal macrophages in culture. Biochemical Journal 261, 211218.CrossRefGoogle ScholarPubMed
Niles, R. M., Wilhelm, S. A., Thomas, P. & Zamcheck, N. (1988). The effect of sodium butyrate and retinoic acid on growth and CEA production in a series of human colorectal tumor cell lines representing different states of differentiation. Cancer Investigation 6, 3945.CrossRefGoogle Scholar
Nunez, M. C., Ayudarte, M. V., Morales, D., Suarez, M. D. & Gil, A. (1990). Effect of dietary nucleotides on intestinal repair in rats with experimental chronic diarrhea. Journal of Parenteral and Enteral Nutrition 14, 598604.CrossRefGoogle ScholarPubMed
O'Dwyer, S. T., Michiè, H. R., Ziegler, T. R., Revhaug, A., Smith, R. J. & Wilmore, D. W. (1988). A single dose of endotoxin increases intestinal permeability in healthy humans. Archives of Surgery 123, 14591464.CrossRefGoogle ScholarPubMed
Ogoshi, S., Iwasa, M., Kitagawa, S., Ohmori, Y., Mizobuchi, S., Iwasa, Y. & Tamiya, T. (1988). Effects of total parenteral nutrition with nucleoside and nucleotide mixture on D-galactosamine-induced liver injury in rats. Journal of Parenteral and Enteral Nutrition 12, 5357.CrossRefGoogle ScholarPubMed
Ogoshi, S., Iwasa, M., Mizobuchi, S., Iwasa, Y., Martiz, A. & Tamiya, T. (1990). Effect of a nucleoside and nucleotide mixture on protein metabolism in rats given total parenteral nutrition after 70% hepatectomy. In Nutritional Support in Organ Failure, pp. 309317 [Tanaka, T. and Okada, A., editors]. Amsterdam: Elsevier.Google Scholar
Ogoshi, S., Iwasa, M., Yonezawa, T. & Tamiya, T. (1985). Effect of nucleotides and nucleoside mixture on rats given total parenteral nutrition after 70% hepatectomy. Journal of Parenteral and Enteral Nutrition 9, 339342.CrossRefGoogle ScholarPubMed
Ove, P., Adams, R. L. P., Abrams, R. & Lieberman, I. (1966). Liver uridine triphosphate after partial hepatectomy. Biochimica et Biophysica Acta 123, 419421.CrossRefGoogle ScholarPubMed
Owen, E. E. & Robinson, R. R. (1963). Amino acid extraction and ammonia metabolism by the human kidney during prolonged administration of ammonium chloride. Journal of Clinical Investigation 42, 263276.CrossRefGoogle ScholarPubMed
Owen, O. E., Felig, P., Morgan, A. P., Wahren, J. & Cahill, G. F. (1969). Liver and kidney metabolism during prolonged starvation. Journal of Clinical Investigation 48, 574583.CrossRefGoogle ScholarPubMed
Palmer, R. M. J., Ferrige, A. G. & Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524526.CrossRefGoogle ScholarPubMed
Patil, D. H., Grimble, G. K. & Silk, D. B. A. (1987). Lactitol, a new hydrogenated lactose derivative: intestinal absorption and laxative threshold in normal human subjects. British Journal of Nutrition 57, 195199.CrossRefGoogle ScholarPubMed
Pitts, R. F. & Pilkington, L.-A. (1966). The relation between plasma concentrations of glutamine and glycine and utilization of their nitrogens as sources of urinary ammonia. Journal of Clinical Investigation 45, 8693.CrossRefGoogle ScholarPubMed
Pollack, P. F., Koldovsky, O. & Nishioka, K. (1992). Polyamines in human and rat milk and in infant formulas. American Journal of Clinical Nutrition 56, 371375.CrossRefGoogle ScholarPubMed
Ponting, G. A., Ward, H. C., Halliday, D. & Sim, A. J. (1990). Protein and energy metabolism with biosynthetic human growth hormone in patients on full intravenous nutritional support. Journal of Parenteral and Enteral Nutrition 14, 437441.CrossRefGoogle ScholarPubMed
Preedy, V. R. & Garlick, P. J. (1988). The influence of restraint and infusion on rates of muscle protein synthesis in the rat. Effect of altered respiratory function. Biochemical Journal 251, 577580.CrossRefGoogle ScholarPubMed
Qamar, M. I., Read, A. E. & Mountford, R. (1986). Increased superior mesenteric artery blood flow after glucose but not lactulose ingestion. Quarterly Journal of Medicine 60, 893896.Google Scholar
Raybould, H. E. (1991). Capsaicin-sensitive vagal afferents and CCK in inhibition of gastric motor function induced by intestinal nutrients. Peptides 12, 12791283.CrossRefGoogle ScholarPubMed
Reaich, D., Channon, S. M., Scrimgeour, C. M. & Goodship, T. H. J. (1992). Ammonium chloride-induced acidosis increases protein breakdown and amino acid oxidation in humans. American Journal of Physiology 263, E735E739.Google ScholarPubMed
Rees, R. G. P., Keohane, P. P., Grimble, G. K., Frost, P. G., Attrill, H. & Silk, D. B. A. (1985). Tolerance of elemental diet administered without starter regimen. British Medical Journal 290, 18691870.CrossRefGoogle ScholarPubMed
Rennie, M. J., Hundal, H. S., Babij, P., MacLennan, P., Taylor, P. M., Watt, P. W., Jepson, M. M. & Millward, D. J. (1986). Characteristics of a glutamine carrier in skeletal muscle have important consequences for nitrogen loss in injury, infection, and chronic disease. Lancet ii, 10081012.CrossRefGoogle Scholar
Richter, G. C., Levine, G. M. & Shiau, Y.-F. (1983). Effects of luminal glucose versus nonnutritive infusates on jejunal mass and absorption in the rat. Gastroenterology 85, 11051112.CrossRefGoogle ScholarPubMed
Roden, M., Paterson, A. R. P. & Turnheim, K. (1991). Sodium-dependent nucleoside transport in rabbit intestinal epithelium. Gastroenterology 100, 15531562.CrossRefGoogle ScholarPubMed
Roediger, W. E. W. (1980). Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21, 793798.CrossRefGoogle ScholarPubMed
Roediger, W. E. W. (1990). The starved colon – diminished mucosal nutrition, diminished absorption, and colitis. Diseases of the Colon & Rectum 33, 858862.CrossRefGoogle ScholarPubMed
Rolandelli, R. H., Koruda, M. J., Settle, R. G. & Rombeau, J. L. (1986). Effects of intraluminal infusion of short-chain fatty acids on the healing of colonic anastomoses in the rat. Surgery 100, 198204.Google Scholar
Romain, N., Dandrifosse, G., Jeusette, D. F. & Forget, P. (1992). Polyamine concentration in rat milk and food, human milk, and infant formulas. Pediatric Research 32, 5863.CrossRefGoogle ScholarPubMed
Rose, W. C. (1937). The nutritive significance of the amino acids and certain related compounds. Science 86, 298300.CrossRefGoogle ScholarPubMed
Rose, W. C. (1957). The amino acid requirements of adult man. Nutrition Abstracts and Reviews 27, 631647.Google ScholarPubMed
Roth, E., Funovics, J., Mühlbacher, F., Schemper, M., Mauritz, W., Sporn, P. & Fritsch, A. (1982). Metabolic disorders in severe abdominal sepsis: glutamine deficiency in skeletal muscle. Clinical Nutrition 1, 2541.CrossRefGoogle ScholarPubMed
Ruppin, H., Bar-Meir, S., Soergel, K. H., Wood, C. M. & Schmitt, M. G. (1980). Absorption of short chain fatty acids by the colon. Gastroenterology 78, 15001507.CrossRefGoogle ScholarPubMed
Rustom, R., Jackson, M. J., Critchley, M. & Bone, J. M. (1992). Tubular metabolism of aprotinin 99mTc and urinary ammonia: effects of proteinuria. Mineral and Electrolyte Metabolism 18, 108112.Google ScholarPubMed
Savaiano, D. A. & Clifford, A. J. (1981). Adenine, the precursor of nucleic acids in intestinal cells unable to synthesize purines de novo. Journal of Nutrition 111, 18161822.CrossRefGoogle ScholarPubMed
Savaiano, D. A., Ho, C. Y., Chu, V. & Clifford, A. J. (1980). Metabolism of orally and intravenously administered purines in rats. Journal of Nutrition 110, 17931804.CrossRefGoogle ScholarPubMed
Schanker, L. S., Jeffrey, J. J. & Tocco, D. J. (1963). Interaction of purines with the pyrimidine transport process of the small intestine. Biochemical Pharmacology 12, 10471053.CrossRefGoogle ScholarPubMed
Scharrer, E., Stubenhofer, L., Tiemeyer, W. & Bindl, C. (1984). Active pyrimidine absorption by chicken colon. Comparative Biochemistry & Physiology A 77, 8588.CrossRefGoogle ScholarPubMed
Scheppach, W., Bartram, P., Richter, A., Richter, F., Liepold, H., Dusel, G., Hofstetter, G., Ruthlein, J. & Kasper, H. (1992). Effect of short-chain fatty acids on the human colonic mucosa in vitro. Journal of Parenteral and Enteral Nutrition 16, 4348.CrossRefGoogle ScholarPubMed
Scheppach, W., Sommer, H., Kirchner, T., Paganelli, G.-M., Bartram, P., Christl, S., Richter, F., Dusel, G. & Kasper, H. (1992). Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103, 5156.CrossRefGoogle ScholarPubMed
Seifter, E., Rettura, G. & Barbul, A. (1978). Arginine, an essential amino acid for injured rats. Surgery 84, 224230.Google ScholarPubMed
Siddiqui, B. & Kim, Y. S. (1984). Effects of sodium butyrate, dimethyl sulfoxide, and retinoic acid on glycolipids of human rectal adenocarcinoma cells. Cancer Research 44, 16481652.Google ScholarPubMed
Smith, C. J. & Bryant, M. P. (1979). Introduction to metabolic activities of intestinal bacteria. American Journal of Clinical Nutrition 32, 149157.CrossRefGoogle ScholarPubMed
Snyderman, S. E., Holt, L. E., Dancis, J., Roitman, E., Boyer, A. & Balis, M. E. (1962). “Unessential” nitrogen: a limiting factor for human growth. Journal of Nutrition 78, 5772.CrossRefGoogle ScholarPubMed
Soeters, P. B. & van Leeuwen, P. A. M. (1986). [Ammonia and glutamine metabolism of the intestine. The effect of lactulose and neomycin.] Infusionstherapie und Klinische Ernährung 13, 186190.Google ScholarPubMed
Sonoda, T. & Tatibana, M. (1978). Metabolic fate of pyrimidines and purines in dietary nucleic acids ingested by mice. Biochimica et Biophysica Acta 521, 5566.CrossRefGoogle ScholarPubMed
Souba, W. W. (1993). Intestinal glutamine metabolism and nutrition. Journal of Nutritional Biochemistry 4, 29.CrossRefGoogle Scholar
Souba, W. W., Klimberg, V. S., Plumley, D. A., Salloum, R. M., Flynn, T. C., Bland, K. I. & Copeland, E. M. (1990). The role of glutamine in maintaining a healthy gut and supporting the metabolic response to injury and infection. Journal of Surgical Research 48, 383387.CrossRefGoogle ScholarPubMed
Souba, W. W., Scott, T. E. & Wilmore, D. W. (1985 a). Intestinal consumption of intravenously administered fuels. Journal of Parenteral and Enteral Nutrition 9, 1822.CrossRefGoogle ScholarPubMed
Souba, W. W., Smith, R. J. & Wilmore, D. W. (1985 b). Glutamine metabolism by the intestinal tract. Journal of Parenteral and Enteral Nutrition 9, 608617.CrossRefGoogle ScholarPubMed
Souba, W. W. & Wilmore, D. W. (1983). Postoperative alterations of arteriovenous exchange of amino acids across the gastrointestinal tract. Surgery 94, 342350.Google ScholarPubMed
Squires, E. J. & Brosnan, J. T. (1983). Measurements of the turnover rate of glutamine in normal and acidotic rats. Biochemical Journal 210, 277280.CrossRefGoogle ScholarPubMed
Stehle, P., Zander, J., Mertes, N., Albers, S., Puchstein, Ch., Lawin, P. & Fürst, P. (1989). Effect of parenteral glutamine peptide supplements on muscle glutamine loss and nitrogen balance after major surgery. Lancet i, 231233.CrossRefGoogle Scholar
Szondy, Z. & Newsholme, E. A. (1990). The effect of various concentrations of nucleobases, nucleosides or glutamine on the incorporation of [3H]thymidine into DNA in rat mesenteric-lymph-node lymphocytes stimulated by phytohaemagglutinin. Biochemical Journal 270, 437440.CrossRefGoogle ScholarPubMed
Tamada, H., Nezu, R., Imamura, I., Matsuo, Y., Takagi, Y., Kamata, S. & Okada, A. (1992). The dipeptide alanyl-glutamine prevents intestinal mucosal atrophy in parenterally fed rats. Journal of Parenteral and Enteral Nutrition 16, 110116.CrossRefGoogle ScholarPubMed
Tanaka, Y., Bush, K. K., Klauck, T. M. & Higgins, P. J. (1989). Enhancement of butyrate-induced differentiation of HT-29 human colon carcinoma cells by 1,25-dihydroxyvitamin D3. Biochemical Pharmacology 38, 38593865.CrossRefGoogle Scholar
Tizianello, A. G., De Ferrari, G., Garibotto, G. & Gurreri, G. (1978). Effects of chronic renal insufficiency and metabolic acidosis on glutamine metabolism in man. Clinical Science & Molecular Medicine 55, 391397.Google ScholarPubMed
Trémolières, J., Scheggia, E. & Flament, C. (1972). [Effects of ornithine α-ketoglutarate on nitrogen balance and the rate of oxidation of ethanol.] Cahiers de Nutrition et de Diététique 7, 297302.Google Scholar
Uauy, R., Stringel, G., Thomas, R. & Quan, R. (1990). Effect of dietary nucleosides on growth and maturation of the developing gut in the rat. Journal of Pediatric Gastroenterology & Nutrition 10, 497503.Google ScholarPubMed
Vallance, P., Collier, J. & Moncada, S. (1989). Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet ii, 997999.CrossRefGoogle Scholar
van Berlo, C. L. H., van Leeuwen, P. A. M. & Soeters, P. B. (1988). Porcine intestinal ammonia liberation. Influence of food intake, lactulose and neomycin treatment. Journal of Hepatology 7, 250257.CrossRefGoogle ScholarPubMed
van der Hulst, R. R., van Kreel, B. K., Von Meyenfeldt, M. F., Brummer, R. J., Arends, J. W., Deutz, N. E. & Soeters, P. B. (1993). Glutamine and the preservation of gut integrity. Lancet 341, 13631365.CrossRefGoogle ScholarPubMed
Vernia, P., Gnaedinger, A., Hauck, W. & Breuer, R. I. (1988). Organic anions and the diarrhea of inflammatory bowel disease. Digestive Diseases & Sciences 33, 13531358.CrossRefGoogle ScholarPubMed
Vinay, P., Allignet, E., Pichette, C., Watford, M., Lemieux, G. & Gougoux, A. (1980). Changes in renal metabolite profile and ammoniagenesis during acute and chronic metabolic acidosis in dog and rat. Kidney International 17, 312325.CrossRefGoogle ScholarPubMed
Visek, W. J. (1986). Arginine needs, physiological state and usual diets. A reevaluation. Journal of Nutrition 116, 3646.CrossRefGoogle Scholar
Watson, A. J. M., Elliott, E. J., Rolston, D. D. K., Borodo, M. M., Farthing, M. J. G. & Fairclough, P. D. (1990). Acetate absorption in the normal and secreting rat jejunum. Gut 31, 170174.CrossRefGoogle ScholarPubMed
Welbourne, T., Weber, M. & Bank, N. (1972). The effect of glutamine administration on urinary ammonium excretion in normal subjects and patients with renal disease. Journal of Clinical Investigation 51, 18521860.CrossRefGoogle ScholarPubMed
Wernerman, J., Brandt, R., Strandell, T., Allgen, L.-G. & Vinnars, E. (1985). The effect of stress hormones on the interorgan flux of amino acids and on the concentration of free amino acids in skeletal muscle. Clinical Nutrition 4, 207216.CrossRefGoogle ScholarPubMed
Wernerman, J., Hammarqvist, F. & Vinnars, E. (1990). α-Ketoglutarate and postoperative muscle catabolism. Lancet 335, 701703.CrossRefGoogle ScholarPubMed
Wernerman, J., Hammarqvist, F., von der Decken, A. & Vinnars, E. (1987). Ornithine α-ketoglutarate improves skeletal muscle protein synthesis as assessed by ribosome analysis and nitrogen use after surgery. Annals of Surgery 206, 674678.CrossRefGoogle ScholarPubMed
Wiegers, U., Kramer, G., Klapproth, K. & Hilz, H. (1976). Separate pyrimidine-nucleotide pools for messenger-RNA and ribosomal-RNA synthesis in HeLa S3 cells. European Journal of Biochemistry 64, 535540.CrossRefGoogle ScholarPubMed
Wilmore, D. W., Moylan, J. A., Bristow, B. F., Mason, A. D. & Pruitt, B. A. (1974). Anabolic effects of human growth hormone and high caloric feedings following thermal injury. Surgery Gynecology & Obstetrics 138, 875884.Google ScholarPubMed
Wilmore, D. W., Smith, R. J., O'Dwyer, S. T., Jacobs, D. O., Ziegler, T. R. & Wang, X.-D. (1988). The gut: a central organ after surgical stress. Surgery 104, 917923.Google Scholar
Windmueller, H. G. (1982). Glutamine utilization by the small intestine. Advances in Enzymology 53, 201237.Google ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1978). Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. Journal of Biological Chemistry 253, 6976.CrossRefGoogle ScholarPubMed
Wolfe, H. M., Sokol, R. J., Dombrowski, M. P., Bottoms, S. F. & Norman, G. S. (1989). Increased neonatal urinary ammonia: a marker for in utero caloric deprivation? American Journal of Perinatology 6, 47.CrossRefGoogle ScholarPubMed
Wu, G. & Greene, L. W. (1992). Glutamine and glucose metabolism in bovine blood lymphocytes. Comparative Biochemistry and Physiology B 103, 821825.CrossRefGoogle ScholarPubMed
Young, G. P. & Gibson, P. (1991). Contrasting effects of butyrate on proliferation and differentiation of normal and neoplastic cells. In Short-chain Fatty Acids: metabolism and clinical importance (10th Ross conference on medical research), pp. 5055 [Roche, A. F., editor]. Columbus, OH: Ross Laboratories.Google Scholar
Ziegler, F., Coudray-Lucas, C., Jardel, A., Lasnier, E. L., Le Boucher, J., Ekindjian, O. & Cynober, L. (1992). Ornithine α-ketoglutarate and glutamine supplementation during refeeding of food-deprived rats. Journal of Parenteral and Enteral Nutrition 16, 505510.CrossRefGoogle ScholarPubMed
Ziegler, T. R., Young, L. S., Manson, J. McK. & Wilmore, D. W. (1988). Metabolic effects of recombinant human growth hormone in patients receiving parenteral nutrition. Annals of Surgery 208, 616.CrossRefGoogle ScholarPubMed
Zöllner, N. (1982). Purine and pyrimidine metabolism. Proceedings of the Nutrition Society 41, 329342.CrossRefGoogle ScholarPubMed