Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T22:35:24.976Z Has data issue: false hasContentIssue false

The Energy Values of Dietary Fibre and Sugar Alcohols for Man

Published online by Cambridge University Press:  14 December 2007

G. Livesey
Affiliation:
AFRC Institute of Food Reh, Norwich Laboratory, Norwich Research Park, Colney, Norwich, NR4 7UA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Argenzio, R. A. & Stevens, C. E. (1984). The large bowel – a supplementary rumen? Proceedings of the Nutrition Society 43, 1323.CrossRefGoogle ScholarPubMed
Arieli, A. (1986). Effect of glucose on fermentation heat in sheep rumen fluid in vitro. British Journal of Nutrition 56, 305311.CrossRefGoogle ScholarPubMed
Atwater, W. O. (1910). Principles of nutrition and nutritive values of food. USDA Farmers' Bulletin no. 142.Google Scholar
Bär, A. (1990). Factorial calculation model for the estimation of the physiological caloric value of polyols. In Caloric Evaluation of Carbohydrates, pp. 209257 [Hosoya, N. editor]. Tokyo: Research Foundation for Sugar Metabolism.Google Scholar
Beaugerie, L., Flourié, B., Franchisseur, C., Pellier, P., Dupas, H. & Rambaud, J.-C. (1989). Intestinal absorption and clinical tolerance of sorbitol, maltitol, lactitol, and Isomalt. Gastroentérologie Clinique et Biologique 13, A102 (Abstract).Google Scholar
Beaugerie, L., Flourié, B., Marteau, P., Pellier, P., Franchisseur, C. & Rambaud, J.-C. (1990). Digestion and absorption in the human intestine of three sugar alcohols. Gastroenterology 99, 717723.CrossRefGoogle ScholarPubMed
Bernier, J.-J. & Pascal, G. (1990). [Energetic value of polyols.] Médecine et Nutrition 26, 221238.Google Scholar
Bickel, H., Matzkies, F., Fekl, W. & Berg, G. (1973). [Utilization and metabolic behaviour of sorbitol during long-term parenteral perfusions.] Deutsche Medizinische Wochenschrift 98, 20792083.Google Scholar
Björneklett, A. & Jenssen, E. (1982). Relationships between hydrogen (H2) and methane (CH4) production in man. Scandinavian Journal of Gastroenterology 17, 985992.Google ScholarPubMed
Björnhag, G. (1987). [Comparative aspects of digestion in the hindgut of mammals. The colonic separation mechanism (CSM).] Deutsche Tierärztliche Wochenschrift 94, 3336.Google Scholar
Blaxter, K. L. (1989). Energy Metabolism in Animals and Man. Cambridge: University Press.Google Scholar
Blundell, J. E. & Burley, V. J. (1987). Satiation, satiety and the action of fibre on food intake. International Journal of Obesity 11 (Suppl. 1), 925.Google ScholarPubMed
British Nutrition Foundation (1990). Complex Carbohydrates in Foods. The Report of the British Nutrition Foundation's Task Force. London: Chapman and Hall.Google Scholar
Brown, J. C., Wortley, G., Johnson, I. T. & Livesey, G. (1987). The Digestible and Metabolisable Energy Values of Polydextrose and Two Carbohydrates Coded HO/1221/F and HO/1220/H Determined in the Rat. Norwich: AFRC Institute of Food Research.Google Scholar
Buchsbaum, R., Wilson, J. & Valiela, I. (1986). Digestibility of plant constituents by Canada Geese and Atlantic Brant. Ecology 67, 386393.CrossRefGoogle Scholar
Burbige, E. J., Lewis, D. R. & Chin, C. K. (1983). Hydrogen liberated by fecal homogenates incubated with dietary fibre supplements in vitro. Gastroenterology 84, 1117.Google Scholar
Carré, B. & Laclerque, B. (1985). Digestion of polysaccharides, protein and lipids by adult cockerels fed on diets containing a pectic cell-wall material from white lupin (Lupinus albus L.) cotyledon. British Journal of Nutrition 54, 669690.CrossRefGoogle ScholarPubMed
Chesson, A., Richardson, A. J. & Robertson, J. A. (1985). Fibre digestion and bacteriology of the digestive tract of pigs fed cereal and vegetable fibre. In Digestive Physiology of the Pig, Beretning fra Statens Husdyrbrugsforsøg no. 580, pp. 272275 (Just, A., Jørgensen, H. and Fernández, J. A. editors). Copenhagen: National Institute of Animal Science.Google Scholar
Concise Medical Dictionary (1980). Erythritol, p. 217. London: Transworld Publishers Ltd.Google Scholar
Cooley, S. & Livesey, G. (1987). The metabolizable energy value of Polydextrose® in a mixed diet fed to rats. British Journal of Nutrition 57, 235243.Google Scholar
Crick, R. G. D. (1961). Improvements in or relating to sweetening agents for food. U.K. Patent Specification no. 884, 961.Google Scholar
Cummings, J. H. (1981). Dietary fibre. British Medical Bulletin 37, 6570.Google Scholar
Cummings, J. H. (1983). Polysaccharide fermentation in the human colon. In Colon and Nutrition, Falk Symposium 32, pp. 91102 (Kasper, H. and Goebell, H. editors). Lancaster: M.T.P. Press Ltd.Google Scholar
Cummings, J. H., Southgate, D. A. T., Branch, W. J., Wiggins, H. S., Houston, H., Jenkins, D. J. A., Jivraj, T. & Hill, M. J. (1979). The digestion of pectin in the human gut and its effect on calcium absorption and large bowel function. British Journal of Nutrition 41, 477485.CrossRefGoogle ScholarPubMed
Davies, I. R. (1990). The Food Energy Values of Unavailable Carbohydrate Assessed in the Rat. PhD thesis, University of East Anglia.Google Scholar
Davies, I. R., Brown, J. C. and Livesey, G. (1991). Energy values and energy balance in rats fed on supplements of guar gum or cellulose. British Journal of Nutrition 65, 415433.Google Scholar
Dawson, T. J., Johns, A. B. & Beal, A. M. (1989). Digestion in the Australian wood duck (Chenonetta jubata): a small avian herbivore showing selective digestion of the hemicellulose component of fiber. Physiological Zoology 62, 522540.Google Scholar
Debongnie, J. C., Newcomer, A. D., McGill, D. B. & Phillips, S. F. (1979). Absorption of nutrients in lactase deficiency. Digestive Diseases and Sciences 24, 225231.Google Scholar
Department of Health (1991). Dietary reference values for food energy and nutrients for the United Kingdom. Report on Health and Social Subjects no. 41. London: HMSO.Google Scholar
Domalski, E. S. (1972). Selected values of heats of combusion and heats of formation of organic compounds containing the elements C, H, N, O, P, and S. Journal of Physical and Chemical Reference Data 1, 221277.CrossRefGoogle Scholar
Dutch Nutrition Council (1987). The Energy Value of Sugar Alcohols: Recommendations of the Committee on Polyols. The Hague: Voedingsraad.Google Scholar
Elia, M., Behrens, R., Northrop, C., Wraight, P. & Neale, G. (1987). Evaluation of mannitol, lactulose and 51Cr-labeled ethylene diamine tetra acetate as markers of intestinal permeability in man. Clinical Science 73, 197204.CrossRefGoogle Scholar
Englyst, H. N., Bingham, S. A., Runswick, S. A., Collinson, E. & Cummings, J. H. (1988). Dietary fibre (non-starch polysaccharides) in fruit, vegetables and nuts. Journal of Human Nutrition and Dietetics 1, 247286.Google Scholar
Englyst, H. N., Bingham, S. A., Runswick, S. A., Collinson, E. & Cummings, J. H. (1989). Dietary fibre (non-starch polysaccharides) in cereal products. Journal of Human Nutrition and Dietetics 2, 253271.CrossRefGoogle Scholar
Englyst, H. N. & Cummings, J. H. (1985). Digestion of the polysaccharides of some cereal foods in the human small intestine. American Journal of Clinical Nutrition 42, 778787.CrossRefGoogle ScholarPubMed
Englyst, H. N. & Cummings, J. H. (1986). Digestion of the carbohydrates of banana (Musa ´aradisiaca sapientum) in the human small intestine. American Journal of Clinical Nutrition 44, 4250.CrossRefGoogle ScholarPubMed
Englyst, H. N. & Cummings, J. H. (1987). Dietary fibre and resistant starch. A nutritional classification of plant polysaccarides. In Dietary Fiber, pp. 4965 (Kritchevsky, D.Bonfield, C. and J. W., Anderson, editors). New York: Plenum Publishing Corporation.Google ScholarPubMed
European Council Directive (1990 a). Nutrition labelling for foodstuffs. Official Journal of the European Community 33, (L276).Google Scholar
European Council Directive (1990 b). Proposal for a council directive on sweeteners for use in foodstuffs. Official Journal of the European Community 4 (C242).Google Scholar
Fadel, J. G., Newman, C. W., Newman, R. K. & Graham, H. (1988). Effects of extrusion cooking of barley on ileal and fecal digestibilities of dietary components in pigs. Canadian Journal of Animal Science 68, 891897.CrossRefGoogle Scholar
Fadel, J. G., Newman, R. K., Newman, C. W. & Graham, H. (1989). Effects of baking hulless barley on the digestibility of dietary components as measured at the ileum and the feces of pigs. Journal of Nutrition 119, 722726.Google Scholar
Figdor, S. K. & Bianchine, J. R. (1983). Caloric utilization and disposition of [14C]polydextrose in man. Journal of Agricultural and Food Chemistry 31, 389.CrossRefGoogle ScholarPubMed
Figdor, S. K. & Rennhard, H. H. (1981). Caloric utilization and disposition of [14C]polydextrose in the rat. Journal of Agricultural and Food Chemistry 29, 11811189.CrossRefGoogle ScholarPubMed
Flemström, G. & Marsden, N. V. B. (1974). Increased inulin absorption from the cat stomach exposed to acetylsalicylic acid. Acta Physiologica Scandinavica 92, 517525.CrossRefGoogle ScholarPubMed
Flourié, B., Florent, C., Etanchaud, F., Evard, D., Franchisseur, C. & Rambaud, J.-C. (1988). Starch absorption by healthy man evaluated by lactulose hydrogen breath test. American Journal of Clinical Nutrition 47, 61.Google Scholar
Fritz, M., Siebert, G. & Kasper, H. (1985). Does dependence of breath hydrogen and methane in healthy volunteers after ingestion of a commerical disaccharide mixture, Palatinit®. British Journal of Nutrition 54, 389400.Google Scholar
Gibson, G. R., Cummings, J. H., Macfarlane, G. T., Allison, C., Segal, I., Vorster, H. H. & Walker, A. R. P. (1990). Alternative pathways for hydrogen disposal during fermentation in the human colon. Gut 31, 679683.Google Scholar
Giesecke, D. (1990). [Physiological and biochemical differences between species in digestion and metabolism.] Advances in Animal Physiology and Animal Nutrition 20, 725.Google Scholar
Graham, H., Hesselman, K. & Åman, P. (1986). The influence of wheat bran and sugar-beet pulp on the digestibility of dietary components in a cereal-based pig diet. Journal of Nutrition 116, 242251.Google Scholar
Grimble, G. K., Patil, D. H. & Silk, D. B. A. (1988). Assimilation of lactitol, an ‘unabsorbed’ disaccharide in the normal human colon. Gut 29, 16661671.CrossRefGoogle ScholarPubMed
Grupp, U. & Siebert, G. (1978). Metabolism of hydrogenated palatinose, an equimolar mixture of α-D-glucopyranosido-1,6-sorbitol and α-D-glucopyranosido-1,6-mannitol. Research in Experimental Medicine 173, 261278.CrossRefGoogle ScholarPubMed
Harley, L. J., Davies, I. R. & Livesey, G. (1989). Digestible energy value of gums in the rat—data on gum arabic. Food Additives and Contaminants 6, 1320.CrossRefGoogle ScholarPubMed
Heuckenkamp, P.-U. & Zöllner, N. (1972). [Xylitol balance during constant rate infusions in normal men.] Klinische Wochenschrift 50, 10631065.Google Scholar
Hidaka, H., Adachi, T., Tokunaga, T., Niimoto, H. & Nakajima, Y. (1982). Production and characterisation of a new sweetener synthesised from sucrose by the action of fructosyltransferase. Abstract of Paper, 42nd Annual Institute of Food Technologists (IFT) Meeting, p. 195. Chicago, IL: IFT.Google Scholar
Hidaka, H., Hara, T., Edia, T., Okada, A., Shimada, K. & Mitsuoka, T. (1983). Effects of fructooligosaccharides on human intestinal flora. In Intestinal Flora and Dietary Factors, pp. 3964 [Mitsuoka, T., editor]. Tokyo: Japan Scientific Societies Press.Google Scholar
Hirayama, M. & Hidaka, H. (1990). Utilization of [U-14C]fructooligosaccharides in man as energy resources. In Caloric Evaluation of Carbohydrates, pp. 2738 [Hosoya, N., editor]. Tokyo: Research Foundation for Sugar Metabolism.Google Scholar
Hobbs, D. C. (1988). Methodology in the measurement of caloric availability. In Low-calorie Products, pp. 245267 [Birch, G. G. and Lindley, M. G., editor]. London: Elsevier Applied Science.Google Scholar
Hungate, R. E. (1963). Polysaccharide storage and growth efficiency in Ruminococcus albus. Journal of Bacteriology 86, 848854.CrossRefGoogle ScholarPubMed
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Iwakawa, T. (1989). On the energy value of saccharides that are hard to digest. New Food Industry 31, 4247.Google Scholar
Jéquier, E. (1987). Energy metabolism in the human body. In Body Weight Control. The Physiology, Clinical Treatment and Prevention of Obesity, pp. 1725 (Bender, A. E. and Brooks, L. J., editors). Edinburgh: Churchill Livingston.Google Scholar
Johnson, I. T., Livesey, G., Gee, J. M., Brown, J. C. & Wortley, G. M. (1990). Biological effects and digestible energy value of a sugar beet fibre preparation in the rat. British Journal of Nutrition 64, 187199.CrossRefGoogle ScholarPubMed
Juby, L. D., Rothwell, J. & Axon, A. T. R. (1989). Lactulose/mannitol test: an ideal screen for celiac disease. Gastroenterology 96, 7985.Google Scholar
Judd, P. A. (1982). The effects of high intakes of barley on gastrointestinal function and apparent digestibilities of dry matter, nitrogen and fat in human volunteers. Journal of Plant Foods 4, 7988.CrossRefGoogle Scholar
Keller, P. (1978). Effects of Repeated Oral Administrations of Increasing Doses of Ro 96-0005 (Arabitol) to the Dogs. Report no. B-89112. Basel: Hoffmann-La Roche.Google Scholar
Keller, P. (1979). A Toxicity Study Following Oral Administration of Ro 96-0005 (Arobitol) in Dogs during 13 Weeks. Report no. B-92252. Basel: Hoffmann-La Roche.Google Scholar
Key, F. B. (1990). Digestion and large intestinal fermentation of breads and haricot beans (Phaseolus vulgaris). Ph.D thesis, Newcastle-upon-Tyne University.Google Scholar
Key, F. B. & Mathers, J. C. (1992). Gastrointestinal responses of rats fed white and wholemeal breads: complex carbohydrates digestibility and the influence of dietary fat context. British Journal of Nutrition (In press).Google Scholar
Keys, J. E., Van Soest, P. J. & Young, E. P. (1970). Effect of increasing dietary cell wall content on the digestibility of hemicellulose and cellulose in swine and rats. Journal of Animal Science 31, 11721177.Google Scholar
Kirchgessner, M. & Müller, H. L. (1983). [Palatinit® digestibility, metabolizability and efficiency of utilization of energy in model studies with sows.] Zeitschrift für Ernährungswissenschaft 22, 234240.Google Scholar
Kroneberg, H. G., Spengler, M. & Strohmeyer, G. (1979). Absorption of Palatinit®, an equimolar mixture of α-D-glucopyranosido-1,6-sorbitol (GPS) and α-D-glucopyranosido-1,6-mannitol (GPM) in the small intestine of colectomy patients. Düsseldorf: Bayer AG, Pharmaceutical Research Center.Google Scholar
Krüger, D., Ziese, T. & Grossklaus, R. (1990). Caloric availability of Polydextrose® in rats. Aktuelle Ernährungsmedizin 15, 8284.Google Scholar
Lajoi, S. F., Bank, S., Miller, T. L. & Wolin, M. J. (1988). Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Applied and Environmental Microbiology 54, 27232727.CrossRefGoogle Scholar
Laker, M. F., Bull, H. J. & Menzies, I. S. (1982). Evaluation of mannitol for use as a probe marker of gastrointestinal permeability in man. European Journal of Clinical Investigation 12, 485491.CrossRefGoogle ScholarPubMed
Lewis, H. B. (1912). The value of inulin as a foodstuff. Journal of the American Medical Association 58, 11761177.Google Scholar
Life Sciences Research Office (1983). A Perspective on the Application of the Atwater System of Food Energy Assessment (Allison, R. G. and Senti, F. R., editors). Bethesda, MD: Federation of American Societies for Experimental Biology.Google Scholar
Liu, Y. F., Fadden, K., Latymer, E. & Low, A. C. (1985). The use of the cannulated pig to study the effects of dietary fibre supplements on the bacterial flora of the porcine hindgut. In Digestive Physiology of the Pig, Beretning fra Statens Husdyrbrugsforsøg no. 580, pp. 300303 [Just, A., Jørgensen, H. and Fernández, J. A. editors]. Copenhagen: National Institute of Animal Science.Google Scholar
Livesey, G. (1984). The energy equivalents of ATP and the energy values of food proteins and fats. British Journal of Nutrition 51, 1528.Google Scholar
Livesey, G. (1987). Methods for Calculating Energy Values Using Energy Balance Data: a Reanalysis of Experimental Data in the ‘Bird Report’. Norwich: AFRC Institute of Food Research.Google Scholar
Livesey, G. (1990 a). Energy values of unavailable carbohydrate and diets: an inquiry and analysis. American Journal of Clinical Nutrition 51, 617637.CrossRefGoogle ScholarPubMed
Livesey, G. (1990 b). The impact of the concentration and dose of Palatinit® in foods and diets on energy value. Food Science and Nutrition 42F, 223243.Google Scholar
Livesey, G. (1990 c). On the energy values of sugar alcohols with the example of Isomalt. In Caloric Evaluation of Carbohydrates, pp. 141164 (Hosoya, N., editor). Tokyo: Research Foundation for Sugar Metabolism.Google Scholar
Livesey, G. (1991 a). Calculating the energy values of foods: towards new empirical formulae based on diets with varied intakes of unavailable complex carbohydrates. European Journal of Clinical Nutrition 45, 112.Google ScholarPubMed
Livesey, G. (1991 b). Determinants of energy density with conventional foods and artificial feeds. Proceedings of the Nutrition Society 50, 371382.Google Scholar
Livesey, G. (1991 c). The energy values of carbohydrate and fibre for man. Proceedings of the Nutrition Society of Australia 16, 7988.Google Scholar
Livesey, G. (1992). The impact of complex carbohydrates on energy balance. In ‘Topics in Dietary Fibre Research’, Proceedings of the COST 92 meeting [Carnovale, E. and Tomassi, G., editors]. London: John Libbey.Google Scholar
Livesey, G. & Elia, M. (1985 a). Food energy values of artificial feeds for man. Clinical Nutrition 4, 99111.CrossRefGoogle ScholarPubMed
Livesey, G. & Elia, M. (1985 b). The potential variation in (a) energy costs of substrate utilization and (b) the energy yield and RQ for lipogenesis. In Substrate and Energy Metabolism in Man, p. A16 [Garrow, J. S. and Halliday, D., editors. London: John Libbey.Google Scholar
Livesey, G. & Elia, M. (1988). Estimation of energy expenditure, net carbohydrate utilisation, and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels (Appendix: Microbial metabolism in man: colonic fermentation). American Journal of Clinical Nutrition 47, 608628.Google Scholar
Longland, A. C. (1990). The use of non-starch polysaccharides as energy sources by pigs. In Caloric Evaluation of Carbohydrates, pp. 1520 [Hosoya, N., editor]. Tokyo: Research Foundation for Sugar Metabolism.Google Scholar
Longstaff, M. & McNab, J. M. (1987). Digestion of starch and fibre carbohydrates in peas by adult cockerels. British Poultry Science 28, 261285.CrossRefGoogle ScholarPubMed
Lorenz, S. & Grossklaus, R. (1984). Risk-benefit analyses of new sugar substitutes: 1. Nutritional-physiological investigations on the osmotic effect and release of glucose in juvenile rats. Nutrition Research 4, 447458.Google Scholar
McCance, R. A. & Lawrence, R. D. (1929). The carbohydrate content of foods – inulin and the fructosans. Medical Research Council Special Report Series no. 135. London: HMSO.Google Scholar
McCance, R. A. & Widdowson, E. M. (1946). The Composition of Foods, 2nd edition. London: HMSO.Google Scholar
McCormick, D. B. & Touster, O. (1961). Conversion of D-[1-14C]arabitol, L-[1-14C]arabitol, and D-[1-14Cribitol to liver glycogen in the rat and guinea-pig. Biochimica et Biophysica Acta 54, 598600.Google Scholar
McCracken, K. J. (1992). Merits of empirical and mechanistic approaches to the study of energy metabolism. Proceedings of the Nutrition Society 51, 125133.CrossRefGoogle Scholar
McLean-Ross, A. H., Eastwood, M. A., Brydon, W. G., Anderson, J. R. & Anderson, D. M. W. (1983). A study of the effects of dietary gum arabic in humans. American Journal of Clinical Nutrition 37, 368375.Google Scholar
Mathers, J. C. (1991). Digestion of non-starch polysaccharides by non-ruminant omnivores. Proceedings of the Nutrition Society 50, 161162.Google Scholar
Metzger, J., Chollet, C., Wermeille, M., Biollaz, J., Llull, J. B. & Lauterburg, B. H. (1988). Lactitol: gastrointestinal absorption and effect on blood lactate in healthy volunteers and patients with cirrhosis. European Journal of Clinical Pharmacology 35, 9799.Google Scholar
Millard, P. & Chesson, A. (1984). Modifications of swede (Brassica napus L.) anterior to the terminal ileum of pigs: some implications for the analysis of dietary fibre. British Journal of Nutrition 52, 583594.Google Scholar
Ministry of Agriculture, Fisheries and Food (1990). Intake of intense and bulk sweeteners in the UK. Food Surveillance Paper no. 29. London: HMSO.Google Scholar
Miyoshi, H., Okuda, T., Oi, Y. & Koishi, H. (1986). Effects of rice fiber on fecal weight, apparent digestibility of energy, nitrogen and fat, and degradation of neutral detergent fiber in young men. Journal of Nutritional Sciences and Vitaminology 32, 581589.Google Scholar
Morton, E. S. (1978). Avian aboreal folivores: why not? In The Ecology of Arboreal Folivores, pp. 123130 [Montgomery, G. G., editor]. Washington: Smithsonian Institution Press.Google Scholar
Müller, H. L. & Kirchgessner, M. (1983). [Energy utilization of cellulose in pigs.] Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 49, 127133.Google Scholar
Müller, H. L. & Kirchgessner, M. (1985). [Energy utilization of pectin by adult sows.] Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 54, 1420, 140.Google Scholar
Näsi, M. & Tanhuanpää, E. (1981). The effects of sugar alcohols on metabolism of growing pigs. Acta Veterinaria Scandinavica 22, 344354.Google Scholar
Nasrallah, S. M. & Iber, F. L. (1969). Mannitol absorption and metabolism in man. American Journal of the Medical Sciences 258, 8088.Google Scholar
Nilsson, U. & Björck, I. (1988). Availability of cereal fructans and inulin in the rat intestinal tract. Journal of Nutrition 118, 14821486.CrossRefGoogle ScholarPubMed
Noda, K. & Oku, T. (1990). The fate and availability of erythritol in the rat. In Caloric Evaluation of Carbohydrates, pp. 5163 [Hosoya, N., editor]. Tokyo: Research Foundation for Sugar Metabolism.Google Scholar
Norgan, N. G. (1990). Thermogenesis above maintenance in humans. Proceedings of the Nutrition Society 49, 217226.Google Scholar
Nyman, M., Asp, N.-G., Cummings, J. & Wiggins, H. (1986). Fermentation of dietary fibre in the intestinal tract: comparison between man and rat. British Journal of Nutrition 55, 487496.Google Scholar
Ohmura, O., Maruta, K., Kato, Y. & Hayakawa, K. (1990). Changes in soyabean oligosaccharides in the digestive tract. In Caloric Evaluation of Carbohydrates, pp. 3950 [Hosoya, N., editor]. Tokyo: Research Foundation for Sugar Metabolism.Google Scholar
Oku, T. & Noda, K. (1990). Erythritol balance study and estimation of the metabolisable energy of erythritol. In Caloric Evaluation of Carbohydrates, pp. 6575 [Hosoya, N., editor]. Tokyo: Research Foundation for Sugar Metabolism.Google Scholar
Oku, T., Tokunaga, T. & Hosoya, N. (1984). Nondigestibility of a new sweetener, “Neosugar”, in the rat. Journal of Nutrition 114, 15741581.CrossRefGoogle Scholar
Patil, D. H., Grimble, G. K. & Silk, D. B. A. (1987). Lactitol, a new hydrogenated lactose derivative: intestinal absorption and laxative threshold in normal human subjects. British Journal of Nutrition 57, 195199.Google Scholar
Périssé, J. (1983). Heterogeneity in food composition data. Food and Nutrition (FAO) 9, 1417.Google Scholar
Ratcliffe, B. (1985). The influence of the gut microflora on the digestive process. In Digestive Physiology in the Pig, Beretning fra Statens Husdyrbrugsforsøg no. 580, pp. 245267 [Just, A., Jørgensen, H. and Fernández, J. A., editors]. Copenhagen: National Institute of Animal Science.Google Scholar
Rennhard, H. H. (1981). Polydextrose – a low-calorie replacement for sugar. Abstracts of Papers, American Chemical Society 182, AGFD 24.Google Scholar
Rennhard, H. H. & Bianchine, J. R. (1976). Metabolism and caloric utilization of orally administered maltitol-[14C] in rat, dog, and man. Journal of Agricultural and Food Chemistry 24, 287290.CrossRefGoogle ScholarPubMed
Roth, F. X., Kirchgessner, M. & Müller, H. L. (1988). [Energy utilization of intracaecally infused acetic and propionic acids in sows.] Journal of Animal Physiology and Animal Nutrition 59, 211217.CrossRefGoogle Scholar
Royal College of Physicians (1983). Obesity. Journal of the Royal College of Physicians 33, 158.Google Scholar
Rumessen, J. J., Bodé, S., Hamberg, O. & Gudmand-Høyer, E. (1990). Fructans of Jerusalem artichokes: intestinal transport, absorption, fermentation, and influence on blood glucose, insulin, and C-peptide responses in healthy subjects. American Journal of Clinical Nutrition 52, 675681.Google Scholar
Sandberg, A.-S., Andersson, H., Hallgren, B., Hasselblad, K., Isaksson, B. & Hultén, L. (1981). Experimental model for in vivo determination of dietary fibre and its effect on the absorption of nutrients in the small intestine. British Journal of Nutrition 45, 283294.Google Scholar
Sandberg, A.-S., Andersson, H., Kivisto, B. & Sandström, B. (1986). Extrusion cooking of a high-fibre cereal product. 1. Effects on digestibility and absorption of protein, fat, starch, dietary fibre and phytate in the small intestine. British Journal of Nutrition 55, 245254.CrossRefGoogle ScholarPubMed
Saunders, D. R. & Wiggins, H. S. (1981). Conservation of mannitol, lactulose, and raffinose by the human colon. American Journal of Physiology 241, G397G402.Google ScholarPubMed
Segal, I., Walker, A. R. P., Lord, S. & Cummings, J. H. (1988). Breath methane and large bowel cancer risk in contrasting. African populations. Gut 29, 608613.CrossRefGoogle ScholarPubMed
Selvendran, R. R. & Robertson, J. A. (1990). The chemistry of dietary fibre – an holistic view of the cell wall matrix. In Dietary Fibre: Chemical and Biological Aspects, pp. 2743 [Southgate, D. A. T., Waldron, K., Johnson, I. T. and Fenwick, G. R. editors]. London: Royal Society of Chemistry.Google Scholar
Siebert, G., Grupp, U. & Heinkel, K. (1975). Isomaltitol. Nutrition and Metabolism 18 (Suppl. 1), 191196.Google Scholar
Sinkeldam, E. J. (1983). Effects of Palatinit® Ingestion on Gut Flora and Gut Contents of Rats (Report no. V83.007/212651). Zeist: TNO Civo Institute.Google Scholar
Southgate, D. A. T. (1975). Fiber and other unavailable carbohydrates and energy effects in the diet. Proceedings of the Western Hemisphere Congress, IV, pp. 5155. [White, P. L. and Selvey, N., editors]. Acton: Publishing Science Group Incorporated.Google Scholar
Southgate, D. A. T. & Durnin, J. V. G. A. (1970). Calorie conversion factors. An experimental reassessment of the factors used in the calculation of the energy value of human diets. British Journal of Nutrition 24, 517535.Google Scholar
Sperber, I. (1985). Colonic separation mechanisms (CSM). A review. Acta Physiologica Scandinavica 124 (Suppl. 542), 87.Google Scholar
Staudacher, W. & Kirchgessner, M. (1984). [Protein and fat deposition and energy utilization on feeding Palatinit® to adult rats.] Zeitschrift für Tierphysiologie, Tierernärung und Futtermittelkunde 52, 272283.Google Scholar
Sträter, P. J. (1988). Palatinit® (Isomalt), an energy-reduced bulk sweetener derived from saccharose. In Low-calorie Products, pp. 6382 [Birch, G. G. and Lindley, M. G., editors]. London: Elsevier Applied Science.Google Scholar
Tokunaga, T., Oku, T. & Hosoya, N. (1989). Utilization and excretion of a new sweetener fructooligosaccharide (Neosugar®) in rats. Journal of Nutrition 119, 553559.Google Scholar
Tsuji, K., Osada, Y., Shimada, N., Nishimura, R., Kobayashi, S., Ichikawa, T. & Hosoya, N. (1990). Energy evaluation of sorbitol in healthy men and rats. In Caloric Evaluation of Carbohydrates, pp. 7790 [Hosoya, N., editor]. Tokyo: Research Foundation for Sugar Metabolism.Google Scholar
van Es, A. J. H. (1991). Dietary energy density on using sugar alcohols as replacements for sugar. Proceedings of the Nutrition Society 50, 383390.CrossRefGoogle ScholarPubMed
van Es, A. J. H., De Groot, L. & Vogt, J. E. (1986). Energy balances of eight volunteers fed on diets supplemented with either lactitol or saccharose. British Journal of Nutrition 56, 545554.Google Scholar
van Soest, P. J., Jeraci, J., Foose, T., Wrick, K. & Ehrle, F. (1983). Comparative fermentation of fibre in man and other animals. In Fiber in Human and Animal Nutrition, pp. 7580 [Wallace, G. and Bell, A., editors]. Wellington: The Royal Society of New Zealand.Google Scholar
van Velthuisen, J. A. (1979). Food additives derived from lactose: lactitol and lactitol palmitate. Journal of Agricultural and Food Chemistry 27, 680686.CrossRefGoogle Scholar
van Weerden, E. J., Huisman, I. J. & van Leeuwen, P. (1984 a). The digestion of Palatinit® in the intestinal tract of the pig. ILOB (Institute of Animal Nutrition and Physiology) Report no. 528a. Wageningen: TNO Cereals, Flours and Bread Institute.Google Scholar
van Weerden, E. J., Huisman, I. J. & van Leeuwen, P. (1984 b). Further studies on the digestion process of Palatinit® in the pig. ILOB (Institute of Animal Nutrition and Physiology) Report no. 530. Wageningen: TNO Cereals, Flours and Bread Institute.Google Scholar
Vidon, N., Palma, R. & Bernier, J.-J. (1983). [Movement of electrolytes along the human small and large intestines during mannitol-induced diarrhoea]. Gastroentérologie Clinique et Biologique 7, 2329.Google Scholar
Webster, A. J. F. (1978). Measurement and prediction of methane production, fermentation heat and metabolism in the tissues of the ruminant gut. In Ruminant Digestion and Feed Evaluation, pp. 8.18.10 [Osbourn, D. F., Beever, D. E. and Thomson, D. J., editors]. London: Agricultural Research Council.Google Scholar
Webster, A. J. F. (1992). Energy expenditure: studies with animals. In The Contribution of Nutrition to Human and Animal Health, pp. 2332 [Widdowson, E. M. and Mathers, J. C., editors]. Cambridge: University Press.Google Scholar
White, J. S., Parsons, C. M. & Baker, D. H. (1988). An in vitro digestibility assay for prediction of the metabolizable energy of low-calorie dextrose polymeric bulking agents. Journal of Food Science 53, 12041207.Google Scholar
Wisker, E. & Feldheim, W. (1992). Faecal bulking and energy value of dietary fibre. In Dietary Fibre – a Component in Foods: Nutritional Function in Health and Disease pp. 223246. [Schweizer, T. F. and Edwards, C. A., editors]. London: Springer-Verlag.Google Scholar
Wisker, E., Maltz, A. & Feldheim, W. (1988). Metabolizable energy of diets low or high in dietary fiber from cereals when eaten by humans. Journal of Nutrition 118, 945952.Google Scholar
Würsch, P. & Anantharaman, G. (1989). Aspects of the energy value assessment of the polyols. In Progress in Sweeteners, pp. 241266 [Grenby, T. H., editor]. London: Elsevier Applied Science.Google Scholar
Würsch, P., Koellreutter, B. & Schweizer, T. F. (1989). Hydrogen excretion after ingestion of five different sugar alcohols and lactulose. European Journal of Clinical Nutrition 43, 819825.Google Scholar
Ziesenitz, S. C. & Siebert, G. (1987). The metabolism and utilization of polyols and other bulk sweeteners compared with sugar. In Developments in Sweeteners-3, pp. 109149 [Grenby, T. H., editor]. London: Elsevier Applied Science.Google Scholar