Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T23:18:39.404Z Has data issue: false hasContentIssue false

Early Biochemical Defects Caused by Dietary Trace Element Deficiencies

Published online by Cambridge University Press:  14 December 2007

J. K. Chesters
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
J. R. Arthur
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1988

References

REFERENCES

Allen, K. G. D., Arthur, J. R., Morrice, P. C., Nicol, F. & Mills, C. F. (1988). Copper deficiency and tissue glutathione concentrations in the rat. Proceedings of the Society for Experimental Biology and Medicine 187, 3843.CrossRefGoogle ScholarPubMed
Arias, I. M., Fleischer, G., Kirsch, R., Mishkin, S. & Gatmaintan, Z. (1976). On the structure and function of ligandin. In Glutathione: Metabolism and Function, Kroc Foundation Series vol. 6, pp. 175188 [Arias, I. M. and Jakoby, W. B., editors]. New York, Raven Press.Google Scholar
Arthur, J. R. (1988). Effects of selenium and vitamin E status on plasma creatine kinase activity in calves. Journal of Nutrition 118, 747755.CrossRefGoogle ScholarPubMed
Arthur, J. R. & Boyne, R. (1985). Superoxide dismutase and glutathione peroxidase activities in neutrophils from selenium deficient and copper deficient cattle. Life Sciences 36, 15691575.CrossRefGoogle ScholarPubMed
Arthur, J. R., Boyne, R., Hill, H. A. O. & Okolow-Zubkowska, M. J. (1981). The production of oxygen-derived radicals by neutrophils from selenium-deficient cattle. FEBS Letters 135, 187190.CrossRefGoogle ScholarPubMed
Arthur, J. R., McPhail, D. B. & Goodman, B. A. (1988 c). Spin trapping of free radicals in homogenates of heart from selenium and vitamin E deficient rats. Free Radical Research Communications 4, 311315.CrossRefGoogle ScholarPubMed
Arthur, J. R., Morrice, P. C. & Beckett, G. J. (1988 a). Thyroid hormone concentrations in selenium deficient and selenium-sufficient cattle. Research in Veterinary Science 45, 122123.CrossRefGoogle ScholarPubMed
Arthur, J. R., Morrice, P. C., Nicol, F., Beddows, S. E., Boyd, R., Hayes, J. D. & Beckett, G. J. (1987). The effects of selenium and copper deficiencies on glutathione S-transferase and glutathione peroxidase in rat liver. Biochemical Journal 248, 539544.CrossRefGoogle ScholarPubMed
Arthur, J. R., Nicol, F., Boyne, R., Allen, K. G. D., Hayes, J. D. & Beckett, G. J. (1988 b). Old and new roles for selenium. In Trace Substances in Environmental Health, vol. xxi, pp. 487498 [Hemphill, D. D., editor]. University of Missouri.Google Scholar
Asayama, K., Kooy, N. W. & Burr, I. M. (1986). Effect of vitamin E deficiency and selenium deficiency on insulin secretory reserve and free radical scavening systems in islets: decrease of islet manganese superoxide dismutase. Journal of Laboratory and Clinical Medicine 107, 459464.Google Scholar
Baker, S. S. & Cohen, H. J. (1984). Increased sensitivity to H2O2 in glutathione peroxidase-deficient rat granulocytes. Journal of Nutrition 114, 20032009.CrossRefGoogle ScholarPubMed
Bales, C. W., Wang, M. C., Freeland-Graves, J. H. & Pobocik, R. S. (1986). The effects of Zn deficiency and food restriction on PGE2 and thromboxane B2 in saliva and plasma of rats. Prostaglandins 31, 859868.CrossRefGoogle ScholarPubMed
Baly, D. L., Curry, D. L., Keen, C. L. & Hurley, L. S. (1984). Effect of manganese on insulin secretion and carbohydrate homeostasis in rats. Journal of Nutrition 114, 14381446.CrossRefGoogle ScholarPubMed
Bambara, R. A., Crute, J. J. & Wahl, A. F. (1985). Is Ap4A an activator of eukaryotic DNA replication. Cancer Investigation 3, 473479.CrossRefGoogle ScholarPubMed
Baril, E. P., Coughlin, S. A. & Zamecnik, P. C. (1985). 5′5‴P1P4 diadenosine tetraphosphate (Ap4 A): a putative initiator of DNA replication. Cancer Investigation 3, 465471.CrossRefGoogle Scholar
Beard, J., Green, W., Miller, L. & Finch, C. (1984). Effects of Fe-deficiency anaemia on hormone levels and thermogenesis during cold exposure. American Journal of Physiology 247, R114R119.Google Scholar
Beckett, G. J., Beddows, S. E., Morrice, P. C., Nicol, F. & Arthur, J. R. (1987). Inhibition of hepatic deiodination of thyroxine caused by selenium deficiency in rats. Biochemical Journal 248, 443447.CrossRefGoogle ScholarPubMed
Blanquet, S., Plateau, P. & Brevet, A. (1983). The role of Zn in 5′,5′ diadenosine tetraphosphate production by aminoacyl-tRNA synthetases. Molecular and Cellular Biochemistry 52, 311.CrossRefGoogle Scholar
Bolze, M. S., Reeves, R. D., Lindbeck, F. E. & Elders, M. J. (1987). Influence of zinc on growth, somatomedin, and glycosaminoglycan metabolism in rats. American Journal of Physiology 252, E21E26.Google ScholarPubMed
Bolze, M. S., Reeves, R. D., Lindbeck, F. E., Kemp, S. F. & Elders, M. J. (1985). Influence of Mn on growth, somatomedin and glycosaminoglycan metabolism. Journal of Nutrition 115, 352358.CrossRefGoogle ScholarPubMed
Boyne, R. & Arthur, J. R. (1979). Alterations in neutrophil function in selenium-deficient cattle. Journal of Comparative Pathology 89, 151158.CrossRefGoogle ScholarPubMed
Boyne, R. & Arthur, J. R. (1981). Effect of selenium and copper deficiency on neutrophil function in cattle. Journal of Comparative Pathology 91, 271276.CrossRefGoogle ScholarPubMed
Boyne, R. & Arthur, J. R. (1986 a). The response of selenium deficient mice to Candida albicans infection. Journal of Nutrition 116, 816822.CrossRefGoogle ScholarPubMed
Boyne, R. & Arthur, J. R. (1986 b). Effects of molybdenum or iron induced copper deficiency on the viability and function of neutrophils from cattle. Research in Veterinary Science 41, 417419.CrossRefGoogle ScholarPubMed
Boyne, R., Arthur, J. R. & Wilson, A. B. (1986). An in vivo and in vitro study of selenium deficiency and infection in rats. Journal of Comparative Pathology 96, 379386.CrossRefGoogle Scholar
Boyne, R., Mann, S. O. & Arthur, J. R. (1984). Effect of Salmonella typhimurium infection on selenium-deficient rats. Microbios Letters 27, 8387.Google Scholar
Bray, T. M., Kubow, S. & Bettger, W. J. (1986). Effect of dietary Zn on endogenous free radical production in rat lung microsomes. Journal of Nutrition 116, 10541060.CrossRefGoogle Scholar
Bremner, I., Morrison, J. N., Wood, A. M. & Arthur, J. R. (1987). Effects of changes in dietary zinc, copper and selenium supply and of endotoxin administration on metallothionein-I concentrations in blood cells and urine in the rat. Journal of Nutrition 117, 15951602.CrossRefGoogle ScholarPubMed
Bryant, R. W., Simon, T. C. & Bailey, J. M. (1983). Hydroperoxy fatty acid formation in selenium deficient rat platelets: coupling of glutathione peroxidase to the lipoxygenase pathway. Biochemical and Biophysical Research Communications 117, 183189.CrossRefGoogle Scholar
Bunk, M. J. & Combs, G. F. (1981). Evidence for impaired conversion of methionine to cysteine in the selenium-deficient chick. Proceedings of the Society for Experimental Biology and Medicine 167, 8793.CrossRefGoogle ScholarPubMed
Burk, R. F. (1983). Biological activity of selenium. Annual Review of Nutrition 3, 5370.CrossRefGoogle ScholarPubMed
Burk, R. F. & Gregory, P. E. (1982). Some characteristics of 75Se-P a selenoprotein found in rat liver and plasma, and comparison of it with selenoglutathione peroxidase. Archives of Biochemistry and Biophysics 213, 7380.CrossRefGoogle ScholarPubMed
Chambers, I., Frampton, J., Goldfarb, P., Affara, N., Bain, W. & Harrison, P. R. (1986). The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the termination codon, TGA. EMBO Journal 5, 12211227.CrossRefGoogle ScholarPubMed
Chen, S.-Y. (1986). Autoradiographic study of cell proliferation in acanthotic buccal epithelium of Zn-deficient rabbits. Archives of Oral Biology 31, 535539.CrossRefGoogle Scholar
Chesters, J. K. (1978). Biochemical functions of zinc in animals. World Review of Nutrition and Dietetics 32, 135164.CrossRefGoogle ScholarPubMed
Chesters, J. K. & Quarterman, J. (1970). Effects of zinc deficiency on food intake and feeding patterns of rats. British Journal of Nutrition 24, 10611069.CrossRefGoogle ScholarPubMed
Chesters, J. K. & Will, M. (1981). Measurement of zinc flux through the plasma in normal and endotoxinstressed pigs and the effects of Zn supplementation during stress. British Journal of Nutrition 46, 119130.CrossRefGoogle ScholarPubMed
Combs, G. F. & Combs, S. B. (1986). The Role of Selenium in Nutrition. New York: Academic Press Inc.Google Scholar
Cossack, Z. T. (1986). Somatomedin-C and zinc status in rats as affected by Zn, protein and food intake. British Journal of Nutrition 56, 163169.CrossRefGoogle ScholarPubMed
Cowen, L. A., Bell, D. E., Hoadley, J. E. & Cousins, R. J. (1986). Influence of dietary zinc deficiency and parenteral zinc on the rat liver fructose 1,6 bisphosphatase activity. Biochemical and Biophysical Research Communications 134, 944950.CrossRefGoogle ScholarPubMed
Crossley, L. G., Falchuk, K. H. & Vallee, B. L. (1982). Messenger ribonucleic acid function and protein synthesis in Zn-deficient E. gracilis. Biochemistry 21, 53595363.CrossRefGoogle Scholar
Dallman, P. R. (1986). Biochemical basis for the manifestations of Fe deficiency. Annual Review of Nutrition 6, 1340.CrossRefGoogle Scholar
Dallman, P. R. (1987). Iron deficiency and the immune response. American Journal of Clinical Nutrition 46, 329334.CrossRefGoogle ScholarPubMed
Dallman, P. R., Refino, C. & Yland, M. J. (1982). Sequence of development of Fe deficiency in the rat. American Journal of Clinical Nutrition 35, 671677.CrossRefGoogle Scholar
Dardenne, M., Pleau, J.-M., Nabarra, B., Lefrancier, P., Derrien, M., Choay, J. & Bach, J.-F. (1982). Contribution of Zn and other metals to the biological activity of the serum thymic factor. Proceedings of the National Academy of Sciences of the U.S.A. 79, 53705373.CrossRefGoogle Scholar
Dardenne, M., Savino, W., Wade, S., Kaiserlian, D., Lemonnier, D. & Bach, J.-F. (1984). In vivo and in vitro studies of thymulin in marginally Zn-deficient mice. European Journal of Immunology 14, 454458.CrossRefGoogle Scholar
Davies, K. J. A., Donovan, C. M., Refino, C. J., Brooks, G. A., Packer, L. & Dallman, P. R. (1984). Distinguishing effects of anaemia and muscle Fe deficiency on exercise bioenergetics in the rat. American Journal of Physiology 246, E535E543.Google Scholar
Davies, N. T. & Lawrence, C. B. (1986). Studies on the effects of copper deficiency on rat liver mitochondria. III. Effects on adenine nucleotide translocase. Biochimica et Biophysica Acta 848, 294304.CrossRefGoogle ScholarPubMed
Davies, N. T., Lawrence, C. B. & Mills, C. F. (1985). Studies on the effects of copper deficiency on rat liver mitochondria II. Effects on oxidative phosphorylation. Biochimica et Biophysica Acta 809, 362368.CrossRefGoogle ScholarPubMed
De Pasquale-Jardieu, P. & Fraker, P. J. (1980). Further characterization of the role of corticosterone in the loss of humoral immunity in the Zn-deficient A/J mouse as determined by adrenalectomy. Journal of Immunology 124, 26502655.CrossRefGoogle Scholar
Dougherty, J. J., Croft, W. A. & Hoekstra, W. G. (1981). Effects of ferrous chloride and iron-dextran on lipid peroxidation in vivo in vitamin E and selenium adequate and deficient rats. Journal of Nutrition 111, 17841796.CrossRefGoogle ScholarPubMed
Dowd, P. S., Kelleher, J. & Guillou, P. J. (1986). T-lymphocyte subsets and interleukin-2 production in zinc-deficient rats. British Journal of Nutrition 55, 5969.CrossRefGoogle ScholarPubMed
Dreosti, I. E., Record, I. & Manuel, S. J. (1985). Zinc deficiency and the developing embryo. Biological Trace Element Research 7, 103122.CrossRefGoogle ScholarPubMed
Eskew, M. L., Scholz, R. W., Reddy, C. C., Todhunter, D. A. & Zarkower, A. (1985). Effects of vitamin E and selenium deficiencies on rat immune function. Immunology 54, 173180.Google ScholarPubMed
Evans, T. C. & Mackler, B. (1985). Effects of Fe deficiency on energy conservation in rat liver and skeletal muscle submitochondrial particles. Biochemical Medicine 34, 9399.CrossRefGoogle Scholar
Evenson, J. K. & Sunde, R. A. (1988). Selenium incorporation into seleno-proteins in the Se-adequate and Se-deficient rat. Proceedings of the Society for Experimental Biology and Medicine 187, 169180.CrossRefGoogle ScholarPubMed
Fell, B. F. (1981). Pathological consequences of copper deficiency and cobalt deficiency. Philosophical Transactions of The Royal Society London 294B, 153169.Google Scholar
Fell, B. F. (1987). The pathology of copper deficiency in animals. In Copper in Animals and Man, vol. 2, pp. 128 [Howell, J. McC. and Gawthorne, J. N., editors]. Boca Raton, Florida: CRC Press.Google Scholar
Fell, B. F., Farmer, L. J., Farquharson, C., Bremner, I. & Graca, D. S. (1985). Observations on the pancreas of cattle deficient in copper. Journal of Comparative Pathology 95, 573590.CrossRefGoogle ScholarPubMed
Fields, M., Ferretti, R. J., Smith, J. C. & Reiser, S. (1984 a). Effect of dietary carbohydrate and copper status on blood pressure of rats. Life Sciences 34, 763769.CrossRefGoogle ScholarPubMed
Fields, M., Ferretti, R. J., Smith, J. C. & Reisner, S. (1984 b). Interaction between dietary carbohydrate and copper nutriture on lipid peroxidation in rat tissues. Biological Trace Element Research 6, 379391.CrossRefGoogle ScholarPubMed
Fogerty, A. C., Ford, G. L., Dreosti, I. E. & Tinsley, I. J. (1985). Zn deficiency and fatty acid composition of tissue lipids. Nutrition Reports International 32, 10091019.Google Scholar
Fraga, C. G., Arias, R. F., Llesuy, S. F., Koch, O. R. & Boveris, A. (1987). Effect of vitamin E- and selenium-deficiency on rat liver chemiluminescence. Biochemical Journal 242, 383386.CrossRefGoogle ScholarPubMed
Fraker, P. J., Gershwin, M. E., Good, R. A. & Prasad, A. S. (1986). Inter-relations between Zn and immune function. Federation Proceedings 45, 14741479.Google Scholar
Fraker, P. J., Hildebrandt, K. & Luecke, R. W. (1984). Alteration of antibody-mediated responses of suckling mice to T-cell dependent and independent antigens by maternal marginal Zn deficiency, restoration of responsivity by nutritional repletion. Journal of Nutrition 114, 170ndash;179.CrossRefGoogle ScholarPubMed
Funk, C. D., Boubez, W. & Powell, W. S. (1987). Effects of selenium-deficient diets on the production of prostaglandins and other oxygenated metabolites of arachidonic acid and linoleic acid by rat and rabbit aortae. Biochimica et Biophysica Acta 921, 213220.CrossRefGoogle ScholarPubMed
Gerson, S. J., Meyer, J. & Gandor, D. (1983). Decreased Zn concentration does not lead to atrophy of rat oral epithelium. Journal of Nutrition 113, 820823.Google Scholar
Giugliano, R. & Millward, D. J. (1987). The effects of severe zinc deficiency on protein turnover in muscle and thymus. British Journal of Nutrition 57, 139155.CrossRefGoogle ScholarPubMed
Goldblum, S. E., Cohen, D. A., Jay, M. & McClain, C. J. (1987). Interleukin 1-induced depression of iron and zinc: role of granulocytes and lactoferrin. American Journal of Physiology 252, E27E32.Google ScholarPubMed
Gordon, P. R., Browning, J. D. & O'Dell, B. L. (1983). Platelet arachidonic acid metabolism and platelet function in Zn-deficient rats. Journal of Nutrition 113, 766772.CrossRefGoogle Scholar
Grossman, A. & Wendel, A. (1983). Non-reactivity of the selenoenzyme glutathione peroxidase with enzymically hydroperoxidised phospholipids. European Journal of Biochemistry 135, 549552.CrossRefGoogle Scholar
Grummt, F., Weinmann-Dorsch, C., Schneider-Schaulies, J. & Lux, A. (1986). Zinc as a second messenger of mitogenic induction. Experimental Cell Research 163, 191200.CrossRefGoogle ScholarPubMed
Hafeman, D. G., Sunde, R. A. & Hoekstra, W. G. (1974). The effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. Journal of Nutrition 104, 580587.CrossRefGoogle ScholarPubMed
Hammermueller, J. D., Bray, T. M. & Bettger, W. J. (1987). Effects of zinc and copper deficiencies on microsomal NADPH-dependent active oxygen generation in rat lung and liver. Journal of Nutrition 117, 894901.CrossRefGoogle ScholarPubMed
Hanas, J. S., Hazuda, D. J., Bogenhagen, D. F., Wu, F. Y.-H. & Wu, C.-W. (1983). Xenopus transcription factor A requires Zn for binding to the 5S RNA gene. Journal of Biological Chemistry 258, 1412014125.CrossRefGoogle Scholar
Haplin, K. M. & Baker, D. H. (1984). Selenium deficiency and trans-sulfuration in the chick. Journal of Nutrition 114, 606612.Google Scholar
Helyar, L. & Sherman, A. R. (1987). Iron deficiency and interleukin-I production by rat leukocytes. American Journal of Clinical Nutrition 46, 346352.CrossRefGoogle ScholarPubMed
Hicks, S. E. & Wallwork, J. C. (1987). Effect of dietary Zn deficiency on protein synthesis in cell-free systems isolated from rat liver. Journal of Nutrition 117, 12341240.CrossRefGoogle Scholar
Hill, K. E. & Burk, R. F. (1985). Effect of selenium deficiency on the disposition of plasma glutathione. Archives of Biochemistry and Biophysics 240, 166171.CrossRefGoogle ScholarPubMed
Hill, K. E., Burk, R. F. & Lane, J. M. (1987). Effect of selenium depletion and repletion on plasma glutathione and glutathione dependent enzymes in the rat. Journal of Nutrition 117, 99104.CrossRefGoogle ScholarPubMed
Hunsaker, H. A., Morita, M. & Allen, K. G. D. (1984). Marginal copper deficiency in rats. Aortal morphology and cholesterol values in first generation adult males. Atherosclerosis 51, 119.CrossRefGoogle ScholarPubMed
Hurley, L. S. (1981). Teratogenic aspects of Mn, Zn & Cu nutrition. Physiological Reviews 61, 249295.CrossRefGoogle Scholar
Hwang, D. H., Chanmugan, P. & Wheeler, C. (1984). Zinc deficiency affects neither platelet arachidonic acid nor platelet aggregation in rats. Journal of Nutrition 114, 398403.CrossRefGoogle ScholarPubMed
Jenkinson, S. G., Lawrence, R. A., Burk, R. F. & Williams, D. M. (1982). Effects of copper deficiency on the activity of the selenoenzyme glutathione peroxidase and on excretion and tissue retention of 75SeO32−. Journal of Nutrition 112, 197204.CrossRefGoogle ScholarPubMed
Jones, D. G. & Suttle, N. F. (1981). Some effects of copper deficiency on leucocyte function in sheep and cattle. Research in Veterinary Science 31, 151156.CrossRefGoogle ScholarPubMed
Jones, D. G. & Suttle, N. F. (1983). The effect of copper deficiency on the resistance of mice to infection with Pasteurella haemolytica. Journal of Comparative Pathology 93, 143149.CrossRefGoogle ScholarPubMed
Joseph, C. E., Ashrafi, S. H. & Waterhouse, J. P. (1981). Structural changes in rabbit oral epithelium caused by Zn deficiency. Journal of Nutrition 111, 5357.CrossRefGoogle Scholar
Kasarskis, E. J., Sparks, D. L. & Slevin, J. T. (1986). Changes in hypothalamic noradrenergic systems during the anorexia of Zn deficiency. Biological Trace Element Research 9, 2535.CrossRefGoogle Scholar
Kennedy, S., Rice, D. A. & Davidson, W. B. (1987). Experimental myopathy in vitamin E and selenium depleted calves with and without added dietary poly-unsaturated fatty acid as a model for nutritional degenerative myopathy in ruminant cattle. Research in Veterinary Science 43, 384394.CrossRefGoogle Scholar
Kirchgessner, M. & Roth, H.-P. (1975). Estimation of metabolic availability of zinc and assessment of zinc requirements from changes in zinc-metalloenzymes. Archiv für Tierernährung 25, 8392.CrossRefGoogle Scholar
Klug, A. & Rhodes, D. (1987). Zinc fingers: a novel protein motif for nucleic acid recognition. Trends in Biochemical Sciences 12, 464469.CrossRefGoogle Scholar
Knight, S. A. & Sunde, R. A. (1987). The effect of progressive selenium deficiency on anti-glutathione peroxidase antibody reactive protein in rat liver. Journal of Nutrition 117, 732738.CrossRefGoogle ScholarPubMed
Koller, L. D., Mulhern, S. A., Frankel, N. C., Steven, M. G. & Williams, J. R. (1987). Immune dysfunction in rats fed a diet deficient in copper. American Journal of Clinical Nutrition 45, 9971006.CrossRefGoogle ScholarPubMed
Kopp, S., Klevay, L. M. & Feliksik, J. M. (1983). Physiological and metabolic characterization of a cardiomyopathy induced by chronic copper deficiency. American Journal of Physiology 245, H855H866.Google ScholarPubMed
Korte, J. J. & Prohaska, J. R. (1987). Dietary copper deficiency alters protein and lipid composition of murine lymphocyte plasma membranes. Journal of Nutrition 117, 10761084.CrossRefGoogle ScholarPubMed
Kramer, T. R., Briske-Anderson, M., Johnson, S. B. & Holman, R. T. (1984). Influence of reduced food intake on polyunsaturated fatty acid metabolism in Zn-deficient rats. Journal of Nutrition 114, 12241230.CrossRefGoogle Scholar
Kuvibidila, S. (1987). Iron deficiency, cell mediated immunity and resistance to infections: present knowledge and controversies. Nutrition Research 7, 9891003.CrossRefGoogle Scholar
Lawrence, C. B., Davies, N. T., Mills, C. F. & Nicol, F. (1985). Studies on the effects of copper deficiency on rat liver mitochondria. I. Changes in mitochondrial composition. Biochimica et Biophysica Acta 809, 351361.CrossRefGoogle ScholarPubMed
Li, E. T. S. & O'Dell, B. L. (1986). Effect of Zn status on the binding of prostaglandins to ovarian membranes and intact platelets of pregnant rats. Journal of Nutrition 116, 14481455.CrossRefGoogle Scholar
Lukasewycz, O. A. & Prohaska, J. R. (1983). Lymphocytes from copper-deficient mice exhibit decreased mitogen reactivity. Nutrition Research 3, 335341.CrossRefGoogle Scholar
Lytton, F. D. C. & Bunce, G. E. (1986). Dietary zinc and parturition in the rat. 1. Uterine pressure cycles. Biological Trace Element Research 9, 151163.CrossRefGoogle Scholar
McClain, C. J., Kasarskis, E. J. & Allen, J. J. (1985). Functional consequences of Zn deficiency. Progress in Food and Nutrition Science 9, 185226.Google Scholar
Magneson, G. R., Puvathingal, J. M. & Ray, W. J. (1987). The concentrations of free Mg2+ and free Zn2+ in equine blood plasma. Journal of Biological Chemistry 262, 11401148.CrossRefGoogle ScholarPubMed
Masters, D. G., Keen, C. L., Lonnerdal, B. & Hurley, L. S. (1983). Zn deficiency teratogenicity, the protective role of maternal tissue catabolism. Journal of Nutrition 113, 905912.CrossRefGoogle Scholar
Masters, D. G., Keen, C. L., Lonnerdal, B. & Hurley, L. S. (1986). Release of zinc from maternal tissue during Zn deficiency or simultaneous Zn and Ca deficiency in the pregnant rat. Journal of Nutrition 116, 21482154.CrossRefGoogle Scholar
Masukawa, T., Goto, J. & Iwata, H. (1983). Impaired metabolism of arachidonate in selenium-deficient animals. Experientia 39, 405406.CrossRefGoogle ScholarPubMed
May, P. M., Linder, P. W. & Williams, D. R. (1977). Computer simulation of metal ion equilibria in biofluids: Models for the low molecular weight distribution of Ca(II), Mg(II), Mn(II), Fe(II), Cu(II), Zn(II), and Pb(II) ions in human blood plasma. Journal of the Chemical Society. Dalton Transactions, 588595.CrossRefGoogle Scholar
Mercalli, M. E., Seri, S., Aquilio, E., Cramarossa, L., Del Gobbo, V., Accinni, L. & Toniette, G. (1984). Zinc deficiency and thymus ultrastructure in rats. Nutrition Research 4, 665671.CrossRefGoogle Scholar
Miller, J., McLachlan, A. D. & Klug, A. (1985). Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO Journal 4, 16091614.CrossRefGoogle ScholarPubMed
Motsenbocker, M. A. & Tappel, A. L. (1984). Effect of dietary selenium on plasma selenoprotein P, selenoprotein P1 and glutathione peroxidase in the rat. Journal of Nutrition 114, 279285.CrossRefGoogle ScholarPubMed
Murkawa, H., Bland, C. E., Willis, W. T. & Dallman, P. R. (1987). Iron deficiency and neutrophil function: different rates of correction of the depression in oxidative burst and myeloperoxidase activity after Fe treatment. Blood 69, 14641468.CrossRefGoogle Scholar
Murray, J. M. & Murray, A. B. (1985). The effects of selenium deficiency and repletion in the host resistance to infection. In Trace Element Metabolism in Man and Animals-5, pp. 244247 [Mills, C. F., Bremner, I. and Chesters, J. K., editors]. Slough: CAB.Google Scholar
Ng, W. L., Fong, L. Y. Y., Ma, L. & Newberne, P. M. (1984). Dietary Zn deficiency and tumorigenesis, a scanning EM study, Journal of Electron Microscopy 33, 344348.Google Scholar
Nielsen, F. H., Hunt, C. D., Mullen, L. M. & Hunt, J. R. (1987). Effect of dietary boron on mineral, estrogen and testosterone metabolism in postmenopausal women. FASEB Journal 1, 394397.CrossRefGoogle ScholarPubMed
Oner, G., Bhaumick, B. & Bala, R. M. (1984). Effect of Zn deficiency on serum somatomedin levels and skeletal growth in young rats. Endocrinology 114, 18601863.CrossRefGoogle Scholar
Orgebin-Crist, M. C., Freeman, M. & Barney, G. H. (1971). Sperm formation in Zn-deficient rats. Annales de Biologie Animale, Biochimie, Biophysique 11, 547558.CrossRefGoogle Scholar
Ortega, S. S., Cachaza, J. A., Tovar, I. V. & Feijoo, M. F. (1985). Zinc deficiency dermatitis in parenteral nutrition: an electron microscopic study. Dermatologica 171, 163169.CrossRefGoogle Scholar
Otter, R., Goldberg, M., Vogl, S. & Wendel, A. (1986). Increased proliferative activity in selenium-deficient mouse liver. Chemico-Biological Interactions 52, 295300.CrossRefGoogle Scholar
Park, J. H. Y., Grandjean, C. J., Antonson, D. L. & Vanderhoof, J. A. (1985). Effects of short-term isolated Zn deficiency on intestinal growth and activities of several brush border enzymes in weanling rats. Pediatric Research 19, 13331336.CrossRefGoogle Scholar
Parnham, M. J., Winkelmann, J. & Leyck, S. (1983). Macrophage, lymphocyte and chronic inflammatory responses in selenium deficient rodents. Association with decreased glutathione peroxidase activity. International Journal of Immunopharmacology 5, 455461.CrossRefGoogle ScholarPubMed
Pascoe, G. A., Sakai Wong, J., Soliven, E. & Correia, M. A. (1983). Regulation of intestinal cytochrome P-450 and heme by dietary nutrients. Critical role of selenium. Biochemical Pharmacology 32, 30273035.CrossRefGoogle ScholarPubMed
Paynter, D. I. (1980 a). Changes in activity of the manganese superoxide dismutase enzyme in tissues of rats with changes in dietary manganese. Journal of Nutrition 110, 437447.CrossRefGoogle ScholarPubMed
Paynter, D. I. (1980 b). The role of dietary copper, manganese, selenium and vitamin E in lipid peroxidation in tissues of the rat. Biological Trace Element Research 2, 121135.CrossRefGoogle ScholarPubMed
Paynter, D. I. & Martin, G. B. (1980). Investigations into combined dietary deficiencies of copper, selenium and vitamin E in the rat. Biological Trace Element Research 2, 175191.CrossRefGoogle ScholarPubMed
Paynter, D. I., Moir, R. J. & Underwood, E. J. (1979). Changes in the activity of the Cu-Zn superoxide dismutase enzyme in tissues of the rat with changes in dietary copper. Journal of Nutrition 109, 15701576.CrossRefGoogle ScholarPubMed
Perkkio, M. V., Jansson, L. T., Dallman, P. R., Siimes, M. A. & Savilahti, E. (1987). sIgA and IgM-containing cells in the intestinal mucosa of iron-deficient rats. American Journal of Clinical Nutrition 46, 341345.CrossRefGoogle ScholarPubMed
Peter, F. & Wang, S. (1981). Serum iron and total iron binding capacity compared with serum ferritin in assessment of iron deficiency. Clinical Chemistry 27, 276279.CrossRefGoogle ScholarPubMed
Prasad, A. S. (ed.) (1982). Clinical and biochemical spectrum of zinc deficiency in human subjects. In Clinical, Biochemical and Nutritional Aspects of Trace Elements, pp. 362. New York: A. R. Liss.Google Scholar
Prasad, A. S., Oberleas, D., Wolff, P. & Horwitz, J. P. (1969). Effect of growth hormone on non-hypophysectomized zinc-deficient rats and zinc on hypophysectomized rats. Journal of Laboratory and Clinical Medicine 73, 486494.Google Scholar
Prohaska, J. R. & Cox, D. A. (1983). Decreased brain ascorbate levels in copper-deficient mice and in brindled mice. Journal of Nutrition 113, 26232629.CrossRefGoogle ScholarPubMed
Prohaska, J. R. & Heller, L. J. (1982). Mechanical properties of the copper-deficient rat heart. Journal of Nutrition 112, 21422150.Google ScholarPubMed
Prohaska, J. R. & Lukasewycz, O. A. (1981). Copper deficiency suppresses the immune response in mice. Science 213, 559561.CrossRefGoogle Scholar
Quisumbing, T. L., Wong, T. M., Jen, L. S. & Loh, T. T. (1985). Biochemical effects of mild iron deficiency and cold acclimatisation on rat skeletal muscle. Biochemical Medicine 34, 355363.CrossRefGoogle ScholarPubMed
Record, I. R., Dreosti, I. E., Tulsi, R. S. & Manuel, S. J. (1986). Maternal metabolism and teratogenicity in Zn-deficient rats. Teratology 33, 311317.CrossRefGoogle Scholar
Reeves, P. G. & O'Dell, B. L. (1986). Effects of dietary zinc deprivation on the activity of angiotensin-converting enzyme in serum of rats and guinea pigs. Journal of Nutrition 116, 128134.CrossRefGoogle ScholarPubMed
Reiser, S., Ferretti, R. J., Fields, M. & Smith, J. C. (1983). Role of dietary fructose in the enhancement of mortality and biochemical changes associated with copper deficiency in rats. American Journal of Clinical Nutrition 38, 214222.CrossRefGoogle ScholarPubMed
Reiter, R. & Wendel, A. (1983). Selenium and drug metabolism-I, Multiple modulations of mouse liver enzymes. Biochemical Pharmacology 32, 30633067.CrossRefGoogle ScholarPubMed
Reiter, R. & Wendel, A. (1984). Selenium and drug metabolism-II, Independence of glutathione peroxidase and reversibility of hepatic enzyme modulations in deficient mice. Biochemical Pharmacology 33, 19231928.CrossRefGoogle ScholarPubMed
Reiter, R. & Wendel, A. (1985). Selenium and drug metabolism-III, Relation of glutathione peroxidase and other hepatic enzyme modulations to dietary supplements. Biochemical Pharmacology 34, 22872290.CrossRefGoogle ScholarPubMed
Robinson, M. F. & Thomson, C. D. (1983). The role of selenium in the diet. Nutrition Abstracts and Reviews 53, 326.Google Scholar
Samman, S. & Roberts, D. C. K. (1985). Dietary copper and cholesterol metabolism. Nutrition Research 5, 10211034.CrossRefGoogle Scholar
Serfass, R. E. & Ganther, H. E. (1975). Defective microbicidal killing in glutathione peroxidase-deficient rats. Nature 255, 640641.CrossRefGoogle Scholar
Siddons, R. C. & Mills, C. F. (1981). Glutathione peroxidase activity and erythrocyte stability in calves differing in selenium and vitamin E status. British Journal of Nutrition 46, 345355.CrossRefGoogle ScholarPubMed
Southon, S., Livesey, G., Gee, J. M. & Johnson, I. T. (1985). Intestinal cell proliferation and protein synthesis in zinc-deficient rats. British Journal of Nutrition 53, 595603.CrossRefGoogle ScholarPubMed
Spears, J. W. (1984). Nickel as a ‘newer trace element’ in the nutrition of domestic animals. Journal of Animal Science 59, 823835.CrossRefGoogle ScholarPubMed
Sullivan, J. F., Jetton, M. M., Hahn, H. K. J. & Burch, R. E. (1980). Enhanced lipid peroxidation in liver microsomes of Zn-deficient rats. American Journal of Clinical Nutrition 33, 5156.CrossRefGoogle Scholar
Sunde, R. A. (1984). The biochemistry of selenoproteins. Journal of the American Oil Chemists Society 61, 18911900.CrossRefGoogle Scholar
Sunde, R. A. & Evenson, J. K. (1987). Serine incorporation into the selenocysteine moiety of glutathione peroxidase. Journal of Biological Chemistry 262, 933937.CrossRefGoogle ScholarPubMed
Takahashi, K. & Cohen, H. J. (1986). Selenium-dependent glutathione peroxidase protein and activity: Immunological investigations on cellular and plasma enzymes. Blood 68, 640645.CrossRefGoogle ScholarPubMed
Takahashi, K., Newburger, P. E. & Cohen, H. J. (1986). Glutathione peroxidase protein: Absence in selenium deficiency states and correlation with ezymatic activity. Journal of Clinical Investigation 77, 14021404.CrossRefGoogle Scholar
Underwood, E. J. & Somers, M. (1969). Studies of zinc nutrition in sheep. 1. The relation of zinc to growth, testicular development and spermatogenesis in young rams. Australian Journal of Agricultural Research 20, 889897.CrossRefGoogle Scholar
Ursini, F., Maiorino, M. & Gregolin, C. (1985). The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochimica et Biophysica Acta 839, 6270.CrossRefGoogle ScholarPubMed
Vallee, B. L. & Galdes, A. (1984). The metallobiochemistry of Zn enzymes. Advances in Enzymology 56, 283430.Google Scholar
Wallwork, J. C., Fosmire, G. J. & Sandstead, H. H. (1981). Effect of zinc deficiency on appetite and plasma amino acid concentrations in the rat. British Journal of Nutrition 45, 127136.CrossRefGoogle ScholarPubMed
Walsh, C. T. & Orme-Johnson, W. H. (1987). Nickel enzymes. Biochemistry 26, 49014906.CrossRefGoogle ScholarPubMed
Weinberg, E. D. (1984). Iron withholding: a defense against infection and neoplasia. Physiological Reviews 64, 65102.CrossRefGoogle ScholarPubMed
Wendel, A. & Otter, R. (1987). Alterations in the intermediary metabolism of selenium-deficient mice. Biochimica et Biophysica Acta 925, 94100.CrossRefGoogle ScholarPubMed
Williams, R. B. & Chesters, J. K. (1970). The effects of early zinc deficiency on DNA and protein synthesis in the rat. British Journal of Nutrition 24, 10531059.CrossRefGoogle ScholarPubMed
Williams, R. B. & Mills, C. F. (1970). The experimental production of zinc deficiency in the rat. British Journal of Nutrition 24, 9891003.CrossRefGoogle ScholarPubMed
Wingender, E., Dilloo, D. & Seifert, K. H. (1984). Zinc ions are differentially required for the transcription of ribosomal 5S RNA and tRNA in a HeLa cell extract. Nucleic Acid Research 12, 89718985.CrossRefGoogle Scholar
Yang, J.-G., Morrison-Plummer, J. & Burk, R. F. (1987). Purification and quantitation of a rat plasma selenoprotein distinct from glutathione peroxidase using monoclonal antibodies. Journal of Biological Chemistry 262, 1337213375.CrossRefGoogle ScholarPubMed
Zidenberg-Cherr, S., Keen, C. L., Lonnerdal, B. & Hurley, L. S. (1983). Superoxide dismutase activities and lipid peroxidation in the rat: developmental correlation affected by Mn deficiency. Journal of Nutrition 113, 24982504.CrossRefGoogle Scholar