Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T20:43:18.109Z Has data issue: false hasContentIssue false

Antioxidants in smokers

Published online by Cambridge University Press:  30 April 2021

Emanuela Astori
Affiliation:
Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria 26, I-20133Milan, Italy
Maria L. Garavaglia
Affiliation:
Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria 26, I-20133Milan, Italy
Graziano Colombo
Affiliation:
Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria 26, I-20133Milan, Italy
Lucia Landoni
Affiliation:
Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria 26, I-20133Milan, Italy
Nicola M. Portinaro
Affiliation:
Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, I-20133Milano, Italy Orthopedic Paediatric and Neuro-Orthopedic Unit, Istituto Clinico Humanitas, IRCCS, I-20089 Rozzano, Milan, Italy
Aldo Milzani
Affiliation:
Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria 26, I-20133Milan, Italy
Isabella Dalle-Donne*
Affiliation:
Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria 26, I-20133Milan, Italy
*
*Corresponding author: Isabella Dalle-Donne, Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy. Tel.: +39-0250314792; e-mail: [email protected]

Abstract

Cigarette smoke (CS) is likely the most common preventable cause of human morbidity and mortality worldwide. Consequently, inexpensive interventional strategies for preventing CS-related diseases would positively impact health systems. Inhaled CS is a powerful inflammatory stimulus and produces a shift in the normal balance between antioxidants and oxidants, inducing oxidative stress in both the respiratory system and throughout the body. This enduring and systemic pro-oxidative state within the body is reflected by increased levels of oxidative stress and inflammation biomarkers seen in smokers. Smokers might benefit from consuming antioxidant supplements, or a diet rich in fruit and vegetables, which can reduce the CS-related oxidative stress. This review provides an overview of the plasma profile of antioxidants observable in smokers and examines the heterogeneous literature to elucidate and discuss the effectiveness of interventional strategies based on antioxidant supplements or an antioxidant-rich diet to improve the health of smokers. An antioxidant-rich diet can provide an easy-to-implement and cost-effective preventative strategy to reduce the risk of CS-related diseases, thus being one of the simplest ways for smokers to stay in good health for as long as possible. The health benefits attributable to the intake of antioxidants have been observed predominantly when these have been consumed within their natural food matrices in an optimal antioxidant-rich diet, while these preventive effects are rarely achieved with the intake of individual antioxidants, even at high doses.

Type
Review Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The recommended dietary (daily) allowance (RDA) is the average daily dietary intake level for vitamins (A, C and E), carotenoids and other antioxidants that is sufficient to meet the nutrient requirement of nearly all (97–98 %) healthy individuals in a particular life stage and sex group(113,114).

§

These authors contributed equally to this manuscript.

References

WHO Media Centre (2015) Fact sheet No. 339. www.who.int/medicentre/factsheets/fs339/en/ (accessed February 2020).Google Scholar
Proctor, RN (2015) The cigarette catastrophe continues. Lancet 385, 938939. doi: 10.1016/S0140-6736(15)60519-0.CrossRefGoogle ScholarPubMed
Schroeder, SA (2013) New evidence that cigarette smoking remains the most important health hazard. New Engl J Med 368, 389390. doi: 10.1056/NEJMe1213751.CrossRefGoogle ScholarPubMed
Jha, P, Ramasundarahettige, C, Landsman, V, et al. (2013) 21st-century hazards of smoking and benefits of cessation in the United States. New Engl J Med 368, 341350. doi: 10.1056/NEJMsa1211128.CrossRefGoogle ScholarPubMed
WCRF/AICR, World Cancer Research Fund/American Institute for Cancer Research (2007) Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. Washington, DC: AICR.Google Scholar
Heuvers, ME, Hegmans, JP, Stricker, BH, et al. (2012) Improving lung cancer survival; time to move on. BMC Pulm Med 12, 77. doi: 10.1186/1471-2466-12-77.CrossRefGoogle ScholarPubMed
Lortet-Tieulent, J, Soerjomataram, I, Ferlay, J, et al. (2014) International trends in lung cancer incidence by histological subtype: adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer 84, 1322. doi: 10.1016/j.lungcan.2014.01.009.CrossRefGoogle ScholarPubMed
IARC, International Agency for Research on Cancer, Lyon (2004) IARC monographs on the evaluation of carcinogenic risk in humans. Tobacco Smoke and Involuntary Smoking. Vol. 83.Google Scholar
USDHHS, U.S. Department of Health and Human Services (2014) The Health Consequences of Smoking – 50 Years of Progress. A Report of the Surgeon General. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health.Google Scholar
Papaioannou, AI, Koutsokera, A, Tanou, K, et al. (2010) The acute effect of smoking in healthy and asthmatic smokers. Eur J Clin Invest 40, 103109. doi: 10.1111/j.1365-2362.2009.02221.x.CrossRefGoogle ScholarPubMed
Yamaguchi, Y, Nasu, F, Harada, A, et al. (2007) Oxidants in the gas phase of cigarette smoke pass through the lung alveolar wall and raise systemic oxidative stress. J Pharmacol Sci 103, 275282. doi: 10.1254/jphs.FP0061055.CrossRefGoogle Scholar
Alberg, AJ (2002) The influence of cigarette smoking on circulating concentrations of antioxidant micronutrients. Toxicology 180, 121137. doi: 10.1016/s0300-483x(02)00386-4.CrossRefGoogle ScholarPubMed
Stocker, R. (2016) Antioxidant defenses in human blood plasma and extra-cellular fluids. Arch Biochem Biophys 595, 136139. doi: 10.1016/j.abb.2015.11.021.CrossRefGoogle ScholarPubMed
Halliwell, B & Gutteridge, JMC (2015) Free Radicals in Biology and Medicine. Fifth Edition. Oxford University Press. DOI: 10.1093/acprof:oso/9780198717478.001.0001 CrossRefGoogle Scholar
Rossi, R, Giustarini, D, Milzani, A, et al. (2009) Cysteinylation and homocysteinylation of plasma protein thiols during ageing of healthy human beings. J Cell Mol Med 13, 31313140. doi: 10.1111/j.1582-4934.2008.00417.x.CrossRefGoogle ScholarPubMed
Colombo, G, Clerici, M, Giustarini, D, et al. (2012) Redox albuminomics: oxidized albumin in human diseases. Antioxid Redox Signal 17, 15151527. DOI: 10.1089/ars.2012.4702 CrossRefGoogle ScholarPubMed
Figueiredo, JC, Crockett, SD, Snover, DC, et al. (2015) Smoking-associated risks of conventional adenomas and serrated polyps in the colorectum. Cancer Causes Control 26, 377386. doi: 10.1007/s10552-014-0513-0.CrossRefGoogle ScholarPubMed
Bailie, L, Loughrey, MB & Coleman, HG. (2017) Lifestyle risk factors for serrated colorectal polyps: a systematic review and meta-analysis. Gastroenterology 152, 92104. doi: 10.1053/j.gastro.2016.09.003.CrossRefGoogle ScholarPubMed
Davenport, JR, Su, T, Zhao, Z, et al. (2018) Modifiable lifestyle factors associated with risk of sessile serrated polyps, conventional adenomas and hyperplastic polyps. Gut 67, 456465. doi: 10.1136/gutjnl-2016-312893.CrossRefGoogle ScholarPubMed
Chow, WH, Dong, LM & Devesa, SS. (2010) Epidemiology and risk factors for kidney cancer. Nat Rev Urol 7, 245257. doi: 10.1038/nrurol.2010.46.CrossRefGoogle ScholarPubMed
Dossus, L, Boutron-Ruault, MC, Kaaks, R, et al. (2014) Active and passive cigarette smoking and breast cancer risk: results from the EPIC cohort. Int J Cancer 134, 18711888. doi: 10.1002/ijc.28508.CrossRefGoogle ScholarPubMed
Islami, F, Moreirad, DM, Boffetta, P, et al. (2014) A systematic review and meta-analysis of tobacco use and prostate cancer mortality and incidence in prospective cohort studies. Eur Urol 66, 10541064. doi: 10.1016/j.eururo.2014.08.059.CrossRefGoogle ScholarPubMed
USDHHS, U.S. Department of Health and Human Services (2010) How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health.Google Scholar
Mons, U, Müezzinler, A, Gellert, C, et al. (2015) CHANCES Consortium. Impact of smoking and smoking cessation on cardiovascular events and mortality among older adults: meta-analysis of individual participant data from prospective cohort studies of the CHANCES consortium. BMJ 350, h1551. doi: 10.1136/bmj.h1551.CrossRefGoogle Scholar
Jahangir, E, Lipworth, L, Edwards, TL, et al. (2015) Smoking, sex, risk factors and abdominal aortic aneurysms: a prospective study of 18 782 persons aged above 65 years in the Southern Community Cohort Study. J Epidemiol Community Health 69, 481488. doi: 10.1136/jech-2014-204920.CrossRefGoogle ScholarPubMed
Tang, W, Yao, L, Roetker, NS, et al. (2016) Lifetime risk and risk factors for abdominal aortic aneurysm in a 24-year prospective study: the ARIC study (Atherosclerosis Risk in Communities). Arterioscler Thromb Vasc Biol 36, 24682477. doi: 10.1161/ATVBAHA.116.308147.CrossRefGoogle Scholar
Reiner, Ž (2018) The importance of smoking cessation in patients with coronary heart disease. Int J Cardiol 258, 2627. doi: 10.1016/j.ijcard.2018.02.009.CrossRefGoogle ScholarPubMed
Prugger, C, Wellmann, J, Heidrich, J, et al.; EUROASPIRE Study Group. (2015) Readiness for smoking cessation in coronary heart disease patients across Europe: results from the EUROASPIRE III survey. Eur J Prev Cardiol 22, 12121219. doi: 10.1177/2047487314564728.CrossRefGoogle ScholarPubMed
Prugger, C, Wellmann, J, Heidrich, J, et al.; EUROASPIRE Study Group. (2014) Passive smoking and smoking cessation among patients with coronary heart disease across Europe: results from the EUROASPIRE III survey. Eur Heart J 35, 590598. doi: 10.1093/eurheartj/eht538.CrossRefGoogle ScholarPubMed
Arnett, DK, Blumenthal, RS, Albert, MA, et al. (2019) 2019 ACC/AHA Guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. J Am Coll Cardiol 74, 13761414. doi: 10.1016/j.jacc.2019.03.009. Erratum in: J Am Coll Cardiol 2019 74, 1428–1429. Erratum in: J Am Coll Cardiol 2020 75, 840.CrossRefGoogle Scholar
Duncan, MS, Freiberg, MS, Greevy, RA Jr, et al. (2019) Association of smoking cessation with subsequent risk of cardiovascular disease. JAMA 322, 642650. doi: 10.1001/jama.2019.10298.CrossRefGoogle ScholarPubMed
Ahmed, AA, Patel, K, Nyaku, MA, et al. (2015) Risk of heart failure and death after prolonged smoking cessation: role of amount and duration of prior smoking. Circ Heart Fail 8, 694701. doi: 10. 1161/CIRCHEARTFAILURE.114.001885 CrossRefGoogle ScholarPubMed
McElroy, JP, Carmella, SG, Heskin, AK, et al. (2019) Effects of cessation of cigarette smoking on eicosanoid biomarkers of inflammation and oxidative damage. PLoS One 14, e0218386. doi: 10.1371/journal.pone.0218386.CrossRefGoogle Scholar
Yanbaeva, DG, Dentener, MA, Creutzberg, EC, et al. (2007) Systemic effects of smoking. Chest 131, 15571566. doi: 10.1378/chest.06-2179.CrossRefGoogle ScholarPubMed
Colombo, G, Dalle-Donne, I, Orioli, M, et al. (2012) Oxidative damage in human gingival fibroblasts exposed to cigarette smoke. Free Radic Biol Med 52, 15841596. DOI: 10.1016/j.freeradbiomed.2012.02.030 CrossRefGoogle ScholarPubMed
Gornati, R, Colombo, G, Clerici, M, et al. (2013) Protein carbonylation in human endothelial cells exposed to cigarette smoke extract. Toxicol Lett 218, 118128. doi: 10.1016/j.toxlet.2013.01.023.CrossRefGoogle ScholarPubMed
Colombo, G, Clerici, M, Giustarini, D, et al. (2014) Pathophysiology of tobacco smoke exposure: Recent insights from comparative and redox proteomics. Mass Spectrom Rev 33, 183218. DOI: 10.1002/mas.21392 CrossRefGoogle ScholarPubMed
Dalle-Donne, I, Colombo, G, Gornati, R, et al. (2017) Protein carbonylation in human smokers and mammalian models of exposure to cigarette smoke: focus on redox proteomics studies. Antioxid Redox Signal 26, 406426. doi: 10.1089/ars.2016.6772.CrossRefGoogle Scholar
Colombo, G, Garavaglia, ML, Astori, E, et al. (2019) Protein carbonylation in human bronchial epithelial cells exposed to cigarette smoke extract. Cell Biol Toxicol 35, 345360. doi: 10.1007/s10565-019-09460-0.CrossRefGoogle ScholarPubMed
Dalle-Donne, I, Garavaglia, ML, Colombo, G, et al. (2020) Cigarette smoking and glutathione. Focus on in vitro cellular models. Toxicol in vitro 65, 104818. doi: 10.1016/j.tiv.2020.104818.CrossRefGoogle Scholar
Cammisotto, V, Nocella, C, Bartimoccia, S, et al. (2021) The role of antioxidants supplementation in clinical practice: focus on cardiovascular risk factors. Antioxidants (Basel) 10, 146. doi: 10.3390/antiox10020146.CrossRefGoogle ScholarPubMed
Geiss, O & Kotzias, D (2007) Tobacco, cigarettes and cigarette smoke. An overview. European Commission. Directorate-General Joint Research Centre. Institute for Health and Consumer Protection.Google Scholar
Hoffmann, D & Hoffmann, I (1997) The changing cigarette, 1950-1995. J Toxicol Environ Health 50, 307364. doi: 10.1080/009841097160393. PMID: 9120872.CrossRefGoogle ScholarPubMed
McNeill, A, Joossens, L, Jarvis, M (2004) Review of the implementation of the Tobacco Product Regulation Directive 2001/37/EC, Commissioned by ASH London, March 2004.Google Scholar
Directive 2014/40/EU of the European Parliament and of the Council of 3 April 2014. Official Journal of the European Union, 29 April 2014.Google Scholar
Lu, X, Cai, J, Kong, H, et al. (2003) Analysis of cigarette smoke condensates by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry I acidic fraction. Anal Chem 75, 44414451. doi: 10.1021/ac0264224.CrossRefGoogle ScholarPubMed
Rodgman, A & Perfetti, TA (editors) (2013) The Chemical Components of Tobacco and Tobacco Smoke. CRC Press, Boca Raton, FL, p. 2065.CrossRefGoogle Scholar
Moretto, N, Facchinetti, F, Southworth, T, et al. (2009) α,β-Unsaturated aldehydes contained in cigarette smoke elicit IL-8 release in pulmonary cells through mitogen-activated protein kinases. Am J Physiol Lung Cell Mol Physiol 296, L839L848. DOI: 10.1152/ajplung.90570.2008 CrossRefGoogle ScholarPubMed
van der Toorn, M, Slebos, DJ, de Bruin, HG, et al. (2013) Critical role of aldehydes in cigarette smoke-induced acute airway inflammation. Respir Res 14, 45. doi: 10.1186/1465-9921-14-45.CrossRefGoogle ScholarPubMed
Yeager, RP, Kushman, M, Chemerynski, S, et al. (2016) Proposed mode of action for acrolein respiratory toxicity associated with inhaled tobacco smoke. Toxicol Sci 151, 347364. doi: 10.1093/toxsci/kfw051.CrossRefGoogle ScholarPubMed
Grootveld, M, Percival, BC, Leenders, J, et al. (2020) Potential adverse public health effects afforded by the ingestion of dietary lipid oxidation product toxins: significance of fried food sources. Nutrients 12, 9741024. doi: 10.3390/nu12040974 CrossRefGoogle ScholarPubMed
Seet, RCS, Lee, CYJ, Loke, WM, et al. (2011) Biomarkers of oxidative damage in cigarette smokers: which biomarkers might reflect acute versus chronic oxidative stress? Free Radic Biol Med 50, 17871793. doi: 10.1016/j.freeradbiomed.2011.03.019.CrossRefGoogle ScholarPubMed
Lykkesfeldt, J, Viscovich, M & Poulsen, HE. (2004) Plasma malondialdehyde is induced by smoking: a study with balanced antioxidant profiles. Br J Nutr 92, 203206. DOI: 10.1079/BJN20041191.CrossRefGoogle ScholarPubMed
Lykkesfeldt, J. (2007) Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clin Chim Acta 380, 5058. doi: 10.1016/j.cca.2007.01.028.CrossRefGoogle Scholar
Chelchowska, M, Ambroszkiewicz, J, Gajewska, J, et al. (2011) The effect of tobacco smoking during pregnancy on plasma oxidant and antioxidant status in mother and newborn. Eur J Obstet Gynecol Reprod Biol 155, 132136. DOI: 10.1016/j.ejogrb.2010.12.006 CrossRefGoogle Scholar
Pignatelli, B, Li, CQ, Boffetta, P, et al. (2001) Nitrated and oxidized plasma proteins in smokers and lung cancer patients. Cancer Res 61, 778784.Google ScholarPubMed
Rossner, P Jr, Terry, MB, Gammon, MD, et al. (2007) Plasma protein carbonyl levels and breast cancer risk. J Cell Mol Med 11, 11381148. doi: 10.1111/j.1582-4934.2007.00097.x.CrossRefGoogle ScholarPubMed
Kocyigit, A, Selek, S, Celik, H, et al. (2011) Mononuclear leukocyte DNA damage and oxidative stress: the association with smoking of hand-rolled and filter-cigarettes. Mutat Res 721, 136141. doi: 10.1016/j.mrgentox.2011.01.013.CrossRefGoogle ScholarPubMed
Rahman, I (2012) Pharmacological antioxidant strategies as therapeutic interventions for COPD. Biochim Biophys Acta 1822, 714728. doi: 10.1016/j.bbadis.2011.11.004.CrossRefGoogle ScholarPubMed
Crotty Alexander, LE, Shin, S & Hwang, JH (2015) Inflammatory diseases of the lung induced by conventional cigarette smoke: a review. Chest 148, 13071322. DOI: 10.1378/chest.15-0409 CrossRefGoogle ScholarPubMed
Goncalves, RB, Coletta, RD, Silverio, KG, et al. (2011) Impact of smoking on inflammation: overview of molecular mechanisms. Inflamm Res 60, 409424. doi: 10.1007/s00011-011-0308-7.CrossRefGoogle ScholarPubMed
Rom, O, Avezov, K, Aizenbud, D, et al. (2013) Cigarette smoking and inflammation revisited. Respir Physiol Neurobiol 187, 510. DOI: 10.1016/j.resp.2013.01.013 CrossRefGoogle ScholarPubMed
Numanami, H, Koyama, S, Nelson, DK, et al. (2003) Serine protease inhibitors modulate smoke-induced chemokine release from human lung fibroblasts. Am J Respir Cell Mol Biol 29, 613619. doi: 10.1165/rcmb.2003-0113OC.CrossRefGoogle ScholarPubMed
Li, CJ, Ning, W, Matthay, MA, et al. (2007) MAPK pathway mediates EGR-1-HSP70-dependent cigarette smoke-induced chemokine production. Am J Physiol Lung Cell Mol Physiol 292, L1297L1303. doi: 10.1152/ajplung.00194.2006.CrossRefGoogle ScholarPubMed
Oltmanns, U, Chung, KF, Walters, M, et al. (2005) Cigarette smoke induces IL-8, but inhibits eotaxin and RANTES release from airway smooth muscle. Respir Res 6, 74. doi: 10.1186/1465-9921-6-74.CrossRefGoogle ScholarPubMed
Rueff-Barroso, CR, Trajano, ET, Alves, JN, et al. (2010) Organ-related cigarette smoke-induced oxidative stress is strain-dependent. Med Sci Monit 16, BR 218226.Google ScholarPubMed
Barreiro, E. (2014) Protein carbonylation and muscle function in COPD and other conditions. Mass Spectrom Rev 33, 219–36. doi: 10.1002/mas.21394.CrossRefGoogle ScholarPubMed
Gould, NS, Min, E, Gauthier, S, et al. (2010) Aging adversely affects the cigarette smoke-induced glutathione adaptive response in the lung. Am J Respir Crit Care Med 182, 11141122. DOI: 10.1164/rccm.201003-0442OC CrossRefGoogle ScholarPubMed
Gould, NS, Min, E, Gauthier, S, et al. (2011) Lung glutathione adaptive responses to cigarette smoke exposure. Respir Res 12, 133. doi: 10.1186/1465-9921-12-133.CrossRefGoogle ScholarPubMed
Gould, NS, Min, E, Huang, J, et al. (2015) Glutathione depletion accelerates cigarette smoke-induced inflammation and airspace enlargement. Toxicol Sci 147, 466474. doi: 10.1093/toxsci/kfv143 CrossRefGoogle ScholarPubMed
Dallongeville, J, Marecaux, N, Fruchart, JC, et al. (1998) Cigarette smoking is associated with unhealthy patterns of nutrient intake: a meta-analysis. J Nutr 128, 14501457.CrossRefGoogle ScholarPubMed
Ma, J, Hampl, JS & Betts, NM. (2000) Antioxidant intakes and smoking status: data from the Continuing Survey of Food Intakes by Individuals 1994–1996. Am J Clin Nutr 71, 774780. doi: 10.1093/ajcn/71.3.774.CrossRefGoogle ScholarPubMed
Phillips, ELR, Arnett, DK, Himes, JH, et al. (2000) Differences and trends in antioxidant dietary intake in smokers and non-smokers, 1980–1992: The Minnesota Heart Survey. Ann Epidemiol 10, 417423. doi: 10.1016/s1047-2797(00)00064-8.CrossRefGoogle ScholarPubMed
Wei, W, Kim, Y & Boudreau, N (2001) Association of smoking with serum and dietary levels of antioxidants in adults: NHANES III, 1988–1994. Am J Public Health 91, 258264. doi: 10.2105/ajph.91.2.258.Google ScholarPubMed
Haibach, JP, Homish, GG & Giovino, GA (2013) A longitudinal evaluation of fruit and vegetable consumption and cigarette smoking. Nicotine Tob Res 15, 355363. doi: 10.1093/ntr/nts130.CrossRefGoogle ScholarPubMed
Northrop-Clewes, CA & Thurnham, DI (2007) Monitoring micronutrients in cigarette smokers. Clin Chim Acta 377, 1438. doi: 10.1016/j.cca.2006.08.028.CrossRefGoogle ScholarPubMed
Lykkesfeldt, J, Christen, S, Wallock, LM, et al. (2000) Ascorbate is depleted by smoking and repleted by moderate supplementation: a study in male smokers and nonsmokers with matched dietary antioxidant intakes. Am J Clin Nutr 71, 530536. DOI: 10.1093/ajcn/71.2.530.CrossRefGoogle ScholarPubMed
Dietrich, M, Block, G, Norkus, EP, et al. (2003) Smoking and exposure to environmental tobacco smoke decrease some plasma antioxidants and increase gamma-tocopherol in vivo after adjustment for dietary antioxidant intakes. Am J Clin Nutr 77, 160166. doi: 10.1093/ajcn/77.1.160.CrossRefGoogle ScholarPubMed
Lykkesfeldt, J (2006) Smoking depletes vitamin C: should smokers be recommended to take supplements? In: Halliwell, B & Poulsen, HE, (editors). Cigarette smoke and oxidative stress. Springer Verlag; pp. 237–60.CrossRefGoogle Scholar
Hakim, IA, Harris, R, Garland, L, et al. (2012) Gender difference in systemic oxidative stress and antioxidant capacity in current and former heavy smokers. Cancer Epidemiol Biomarkers Prev 21, 21932200. doi: 10.1158/1055-9965.EPI-12-0820.CrossRefGoogle ScholarPubMed
Badea, M, Gaman, L, Delia, C, et al. (2019) Trends of lipophilic, antioxidant and hematological parameters associated with conventional and electronic smoking habits in middle-age Romanians J Clin Med 8, 665. doi: 10.3390/jcm8050665.CrossRefGoogle ScholarPubMed
Karademirci, M, Kutlu, R, Kilinc, I (2018) Relationship between smoking and total antioxidant status, total oxidant status, oxidative stress index, vit C, vit E. Clin Respir J 12, 20062012. doi: 10.1111/crj.12757.CrossRefGoogle ScholarPubMed
Bassey, IE, Gali, RM & Udoh, AE (2018) Fertility hormones and vitamin E in active and passive adult male smokers in Calabar, Nigeria. PLoS One 13, e0206504. doi: 10.1371/journal.pone.0206504.CrossRefGoogle ScholarPubMed
Carnevale, R, Sciarretta, S, Violi, F, et al. (2016) Acute impact of tobacco vs electronic cigarette smoking on oxidative stress and vascular function. Chest 150, 606612. doi: 10.1016/j.chest.2016.04.012.CrossRefGoogle ScholarPubMed
Lymperaki, E, Makedou, K, Iliadis, S, et al. (2015) Effects of acute cigarette smoking on total blood count and markers of oxidative stress in active and passive smokers. Hippokratia 19, 293297.Google ScholarPubMed
Shah, AA, Khand, F, Uddin, T, et al. (2015) Effect of smoking on serum xanthine oxidase, malondialdehyde, ascorbic acid and α-tocopherol levels in healthy male subjects. J Med Sci 31, 146149. doi: 10.12669/pjms.311.6148.Google ScholarPubMed
Jiang, Q (2014) Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med 72, 7690. doi: 10.1016/j.freeradbiomed.2014.03.035.CrossRefGoogle ScholarPubMed
Sobczak, A, Golka, D & Szoltysek-Boldys, I (2004) The effects of tobacco smoke on plasma alpha- and gamma-tocopherol levels in passive and active cigarette smokers. Toxicol Lett 151, 429437. doi: 10.1016/j.toxlet.2004.03.010.CrossRefGoogle ScholarPubMed
Helmersson, J, Larsson, A, Vessby, B, et al. (2005) Active smoking and a history of smoking are associated with enhanced prostaglandin F2α, interleukin-6 and F2-isoprostane formation in elderly men. Atherosclerosis 181, 201207. doi: 10.1016/j.atherosclerosis.2004.11.026.CrossRefGoogle Scholar
Wei, YW, Chuang, HY, Huang, MC, et al. (2009) Comparison of plasma antioxidant levels and related metabolic parameters between smokers and non-smokers. Kaohsiung J Med Sci 25, 423430. DOI: 10.1016/S1607-551X(09)70537-6 Google Scholar
Kayan, M, Naziroğlu, M, Celik, O, et al. (2009) Vitamin C and E combination modulates oxidative stress induced by X-ray in blood of smoker and nonsmoker radiology technicians. Cell Biochem Funct 27, 424429.CrossRefGoogle Scholar
Gabriel, HE, Liu, Z, Crott, JW, et al. (2006) A comparison of carotenoids, retinoids, and tocopherols in the serum and buccal mucosa of chronic cigarette smokers versus nonsmokers. Cancer Epidemiol Biomarkers Prev 15, 993999. doi: 10.1158/1055-9965.EPI-05-0664.CrossRefGoogle ScholarPubMed
Leonard, SW, Bruno, RS, Paterson, E, et al. (2003) 5-nitro-gamma-tocopherol increases in human plasma exposed to cigarette smoke in vitro and in vivo. Free Radic Biol Med 35, 15601567. doi: 10.1016/j.freeradbiomed.2003.09.010.CrossRefGoogle ScholarPubMed
Zerbinati, C, Galli, F, Regolanti, R, et al. (2015) Gas chromatography-mass spectrometry microanalysis of alpha- and gamma-tocopherol in plasma and whole blood. Clin Chim Acta 446, 156162. doi: 10.1016/j.cca.2015.04.026.CrossRefGoogle ScholarPubMed
Jeanes, YM, Hall, WL, Proteggente, AR, et al. (2004) Cigarette smokers have decreased lymphocyte and platelet alpha-tocopherol levels and increased excretion of the gamma-tocopherol metabolite gamma-carboxyethyl-hydroxychroman (gamma-CEHC). Free Radic Res 38, 861868. doi: 10.1080/10715760410001715149.CrossRefGoogle Scholar
Lodge, JK (2005) Vitamin E bioavailability in humans. J Plant Physiol 162, 790796. doi: 10.1016/j.jplph.2005.04.012.CrossRefGoogle ScholarPubMed
Borel, P, Preveraud, D, Desmarchelier, C (2013) Bioavailability of vitamin E in humans: an update. Nutr Rev 71, 319331. doi: 10.1111/nure.12026.CrossRefGoogle ScholarPubMed
Raatz, SK, Jahns, L, Johnson, LAK, et al. (2017) Smokers report lower intake of key nutrients than nonsmokers, yet both fall short of meeting recommended intakes. Nutr Res 45, 3037. doi: 10.1016/j.nutres.2017.07.010.CrossRefGoogle ScholarPubMed
Munro, LH, Burton, G & Kelly, FJ (1997) Plasma RRR-α-tocopherol concentrations are lower in smokers than in non-smokers after ingestion of a similar oral load of this antioxidant vitamin. Clin Sci 92, 8793. doi: 10.1042/cs0920087.CrossRefGoogle ScholarPubMed
Bruno, RS, Ramakrishnan, R, Montine, TJ, et al. (2005) {alpha}-Tocopherol disappearance is faster in cigarette smokers and is inversely related to their ascorbic acid status. Am J Clin Nutr 81, 95103. doi: 10.1093/ajcn/81.1.95.CrossRefGoogle ScholarPubMed
Traber, MG, Winklhofer-Roob, BM, Roob, JM, et al. (2001) Vitamin E kinetics in smokers and nonsmokers. Free Radic Biol Med 31, 13681374. doi: 10.1016/s0891-5849(01)00723-7.CrossRefGoogle ScholarPubMed
Bruno, RS, Leonard, SW, Atkinson, J, et al. (2006) Faster plasma vitamin E disappearance in smokers is normalized by vitamin C supplementation. Free Radic Biol Med 40, 689697. doi: 10.1016/j.freeradbiomed.2005.10.051.CrossRefGoogle ScholarPubMed
Bruno, RS, Leonard, SW, Li, J, et al. (2005) Lower plasma alpha-carboxyethyl-hydroxychroman after deuterium-labeled alpha-tocopherol supplementation suggests decreased vitamin E metabolism in smokers. Am J Clin Nutr 81, 10521059. doi: 10.1093/ajcn/81.5.1052.CrossRefGoogle ScholarPubMed
Ford, ES, Li, C, Cunningham, TJ, et al. (2014) Associations between antioxidants and all-cause mortality among US adults with obstructive lung function. Br J Nutr 112, 16621673. doi: 10.1017/S0007114514002669.CrossRefGoogle ScholarPubMed
Marangon, K, Devaraj, S & Jialal, I. (1999) Measurement of protein carbonyls in plasma of smokers and in oxidized LDL by an ELISA. Clin Chem 45, 577578.CrossRefGoogle ScholarPubMed
Nagai, K, Betsuyaku, T, Kondo, T, et al. (2006) Long term smoking with age builds up excessive oxidative stress in bronchoalveolar lavage fluid. Thorax 61, 496502. DOI: 10.1136/thx.2005.049148.CrossRefGoogle ScholarPubMed
Suzuki, M, Betsuyaku, T, Ito, Y, et al. (2008) Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 39, 673682. doi: 10.1165/rcmb.2007-0424OC.CrossRefGoogle ScholarPubMed
Hackett, TL, Scarci, M, Zheng, L, et al. (2010) Oxidative modification of albumin in the parenchymal lung tissue of current smokers with chronic obstructive pulmonary disease. Respir Res 11, 180. doi: 10.1186/1465-9921-11-180.CrossRefGoogle ScholarPubMed
Colombo, G, Aldini, G, Orioli, M, et al. 2010. Water-soluble alpha,beta-unsaturated aldehydes of cigarette smoke induce carbonylation of human serum albumin. Antioxid Redox Signal 12, 349364. doi: 10.1089/ars.2009.2806.CrossRefGoogle ScholarPubMed
Colombo, G, Rossi, R, Gagliano, N, et al. (2012) Red blood cells protect albumin from cigarette smoke-induced oxidation. PLoS One 7, e29930. doi: 10.1371/journal.pone.0029930.CrossRefGoogle ScholarPubMed
Minetti, M & Malorni, W. (2006) Redox control of red blood cell biology: the red blood cell as a target and source of prooxidant species. Antioxid Redox Signal 8, 11651169. DOI: 10.1089/ars.2006.8.1165.CrossRefGoogle ScholarPubMed
Cimen, MY (2008) Free radical metabolism in human erythrocytes. Clin Chim Acta 390, 111. doi: 10.1016/j.cca.2007.12.025.CrossRefGoogle ScholarPubMed
Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. (2000) Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington (DC): National Academies Press (US). pp. 1506. DOI: 10.17226/9810.Google Scholar
Institute of Medicine (US) Panel on Micronutrients. (2001) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington (DC): National Academies Press (US). pp. 1773. DOI: 10.17226/10026.Google Scholar
Giustarini, D, Dalle-Donne, I, Tsikas, D, et al. (2009) Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci 46, 241281. doi: 10.3109/10408360903142326.CrossRefGoogle ScholarPubMed
Bjelakovic, G, Nikolova, D, Gluud, LL, et al. (2012) Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 3, CD007176. DOI: 10.1002/14651858.CD007469.pub2 Google Scholar
Gaziano, JM, Sesso, HD, Christen, WG, et al. (2012) Multivitamins in the prevention of cancer in men: The Physicians’ Health Study II Randomized Controlled Trial. JAMA 308, 18711880. doi: 10.1001/jama.2012.14641.CrossRefGoogle ScholarPubMed
Ye, Y, Li, J & Yuan, Z (2013) Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials. PLoS ONE 8, e56803. doi: 10.1371/journal.pone.0056803 CrossRefGoogle ScholarPubMed
Poljsak, B, Šuput, D & Milisav, I (2013) Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev 2013, 956792. doi: 10.1155/2013/956792.CrossRefGoogle ScholarPubMed
Myung, SK, Ju, W, Cho, B, et al. (2013) Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ 346, f10 doi: 10.1136/bmj.f10 CrossRefGoogle ScholarPubMed
Fortmann, SP, Burda, BU, Senger, CA, et al. (2013) Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: An updated systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med 159, 824834. DOI: 10.7326/0003-4819-159-12-201312170-00729 CrossRefGoogle ScholarPubMed
Bjelakovic, G, Nikolova, D & Gluud, C. (2014) Antioxidant supplements and mortality. Curr Opin Clin Nut Metab Care 17, 4044. DOI: 10.1097/MCO.0000000000000009 Google ScholarPubMed
Neuhouser, ML, Barnett, MJ, Kristal, AR, et al. (2009) Dietary supplement use and prostate cancer risk in the Carotene and Retinol Efficacy Trial. Cancer Epidemiol Biomarkers Prev 18, 22022206. doi: 10.1158/1055-9965.EPI-09-0013.CrossRefGoogle ScholarPubMed
Salehi, B, Martorell, M, Arbiser, JL, et al. (2018) Antioxidants: positive or negative actors? Biomolecules 8, 124. doi: 10.3390/biom8040124.CrossRefGoogle ScholarPubMed
Alsharairi, NA (2019) The effects of dietary supplements on asthma and lung cancer risk in smokers and non-smokers: a review of the literature. Nutrients 11, pii: E725. doi: 10.3390/nu11040725.CrossRefGoogle ScholarPubMed
Satia, JA, Littman, A, Slatore, CG, et al. (2009) Long-term use of beta-carotene, retinol, lycopene, and lutein supplements and lung cancer risk: results from the VITamins And Lifestyle (VITAL) study. Am J Epidemiol 169, 815828. doi: 10.1093/aje/kwn409.CrossRefGoogle ScholarPubMed
Cortés-Jofré, M, Rueda, JR, Corsini-Muñoz, G, et al. (2012) Drugs for preventing lung cancer in healthy people. Cancer 127, 172184. doi: 10.1002/ijc.28508.Google Scholar
Middha, P, Weinstein, SJ, Männistö, S, et al. (2019) β-Carotene supplementation and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: the role of tar and nicotine. Nicotine Tob Res 21, 10451050. doi: 10.1093/ntr/nty115.CrossRefGoogle ScholarPubMed
Omenn, GS, Goodman, GE, Thornquist, MD, et al. (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334, 11501155. doi: 10.1056/NEJM199605023341802.CrossRefGoogle ScholarPubMed
Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. (1994) N Engl J Med 330, 10291035. doi: 10.1056/NEJM199404143301501 CrossRefGoogle Scholar
Hennekens, CH, Buring, JE, Manson, JE, et al. (1996) Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 334, 11451149. doi: 10.1056/NEJM199605023341801.CrossRefGoogle ScholarPubMed
Fortmann, SP, Whitlock, EP & Burda, BU (2014) Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer. Ann Intern Med 160, 656. DOI: 10.7326/L14-5009-5 CrossRefGoogle ScholarPubMed
Palozza, P, Serini, S, Trombino, S, et al. (2006) Dual role of beta-carotene in combination with cigarette smoke aqueous extract on the formation of mutagenic lipid peroxidation products in lung membranes: dependence on pO2. Carcinogenesis 27, 23832391. doi: 10.1093/carcin/bgl074.CrossRefGoogle ScholarPubMed
Hurst, JS, Contreras, JE, Siems, WG, et al. (2004) Oxidation of carotenoids by heat and tobacco smoke. Biofactors 20, 2335. doi: 10.1002/biof.5520200103.CrossRefGoogle ScholarPubMed
Palozza, P, Simone, R & Mele, MC (2008) Interplay of carotenoids with cigarette smoking: Implications in lung cancer. Curr Med Chem 15, 844854. doi: 10.2174/092986708783955400 CrossRefGoogle ScholarPubMed
Poljsak, B & Milisav, I (2012) The neglected significance of “antioxidative stress”. Oxid Med Cell Longev 2012, 480895. doi: 10.1155/2012/480895.CrossRefGoogle ScholarPubMed
Finkel, T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194, 715. DOI: 10.1083/jcb.201102095 CrossRefGoogle ScholarPubMed
Mondul, AM, Sampson, JN, Moore, SC, et al. (2013) Metabolomic profile of response to supplementation with β-carotene in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Am J Clin Nutr 98, 488493. DOI: 10.3945/ajcn.113.062778 CrossRefGoogle ScholarPubMed
Hemilä, H. (2016) Vitamin E administration may decrease the incidence of pneumonia in elderly males. Clin Interv Aging 11, 1379–85. DOI: 10.2147/CIA.S114515.CrossRefGoogle ScholarPubMed
Tasaka, S, Amaya, F, Hashimoto, S, et al. (2008) Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome. Antioxid Redox Signal 10, 739753. doi: 10.1089/ars.2007.1940.CrossRefGoogle ScholarPubMed
Mah, E, Pei, R, Guo, Y, et al. (2013) γ-Tocopherol-rich supplementation additively improves vascular endothelial function during smoking cessation. Free Radic Biol Med 65, 12911299. doi: 10.1016/j.freeradbiomed.2013.09.016.CrossRefGoogle ScholarPubMed
Mah, E, Pei, R, Guo, Y, et al. (2015) Greater γ-tocopherol status during acute smoking abstinence with nicotine replacement therapy improved vascular endothelial function by decreasing 8-iso-15(S)-prostaglandin F2α. Exp Biol Med 240, 527533. doi: 10.1177/1535370214556948.CrossRefGoogle ScholarPubMed
Guertin, KA, Grant, RK, Arnold, KB, et al. (2016) Effect of long-term vitamin E and selenium supplementation on urine F2-isoprostanes, a biomarker of oxidative stress. Free Radic Biol Med 95, 349356. doi: 10.1016/j.freeradbiomed.2016.03.010.CrossRefGoogle ScholarPubMed
Sadeghi-Ardekani, K, Haghighi, M & Zarrin, R (2018) Effects of omega-3 fatty acid supplementation on cigarette craving and oxidative stress index in heavy-smoker males: a double-blind, randomized, placebo-controlled clinical trial. J Psychopharmacol 32, 9951002. doi: 10.1177/0269881118788806.CrossRefGoogle ScholarPubMed
Hall, JN, Moore, S, Harper, SB, et al. (2009) Global variability in fruit and vegetable consumption. Am J Prev Med 36, 402409.e5. doi: 10.1016/j.amepre.2009.01.029.CrossRefGoogle ScholarPubMed
Boeing, H, Bechthold, A, Bub, A, et al. (2012) Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 51, 637663. DOI 10.1007/s00394-012-0380-y CrossRefGoogle ScholarPubMed
Leenders, M, Sluijs, I, Ros, MM, et al. (2013) Fruit and vegetable consumption and mortality: European prospective investigation into cancer and nutrition. Am J Epidemiol 178, 590602. doi: 10.1093/aje/kwt006.CrossRefGoogle ScholarPubMed
Ros, E, Martínez-González, MA, Estruch, R, et al. (2014) Mediterranean diet and cardiovascular health: teachings of the PREDIMED study. Adv Nutr 5, 330S336S. doi: 10.3945/an.113.005389.CrossRefGoogle ScholarPubMed
Wang, X, Ouyang, Y, Liu, J, et al. (2014) Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and doseresponse meta-analysis of prospective cohort studies. BMJ 349, g4490. doi: 10.1136/bmj.g4490.CrossRefGoogle Scholar
Bradbury, KE, Appleby, PN & Key, TJ (2014) Fruit, vegetable, and fiber intake in relation to cancer risk: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr 100, 394S398S. doi: 10.3945/ajcn.113.071357 CrossRefGoogle Scholar
Leenders, M, Siersema, PD, Overvad, K, et al. (2015) Subtypes of fruit and vegetables, variety in consumption and risk of colon and rectal cancer in the European Prospective Investigation into Cancer and Nutrition. Intern J Cancer 137, 27052714. doi: 10.1002/ijc.29640.CrossRefGoogle ScholarPubMed
WCRF/AICR, World Cancer Research Fund/American Institute for Cancer Research. (2010) WCRF/AICR systematic literature review continuous update project report: the associations between food, nutrition and physical activity and the risk of colorectal cancer. London: World Cancer Research Fund/American Institute for Cancer Research.Google Scholar
Büchner, FL, Bueno-de-Mesquita, HB, Linseisen, J, et al. (2010) Fruits and vegetables consumption and the risk of histological subtypes of lung cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Causes Control 21, 357371. DOI: 10.1007/s10552-009-9468-y CrossRefGoogle Scholar
Bastide, N, Dartois, L, Dyevre, V, et al. (2017) Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. Eur J Nutr 56, 12331243. doi: 10.1007/s00394-016-1172-6.CrossRefGoogle ScholarPubMed
Bentley, AR, Kritchevsky, SB, Harris, TB, et al. (2012) Health ABC Study. Dietary antioxidants and forced expiratory volume in 1 s decline: the Health, Aging and Body Composition study. Eur Respir J 39, 979984. doi: 10.1183/09031936.00190010.CrossRefGoogle ScholarPubMed
Kaluza, J, Larsson, SC, Orsini, N, et al. (2017) Fruit and vegetable consumption and risk of COPD: a prospective cohort study of men. Thorax 72, 500509. doi: 10.1136/thoraxjnl-2015-207851.CrossRefGoogle ScholarPubMed
Kaluza, J, Harris, HR, Linden, A, et al. (2018) Long-term consumption of fruits and vegetables and risk of chronic obstructive pulmonary disease: a prospective cohort study of women. Int J Epidemiol 47, 18971909. doi: 10.1093/ije/dyy178.Google ScholarPubMed
USDA, United States Department of Agriculture, Agricultural Research Service. (2011) National Nutrient Database for Standard Reference, Release 24. http://www.ars.usda.gov/nutrientdata.Google Scholar
Eliassen, AH, Hendrickson, SJ, Brinton, LA, et al. (2012) Circulating carotenoids and risk of breast cancer: pooled analysis of eight prospective studies. J Natl Cancer Inst 104, 19051916. doi: 10.1093/jnci/djs461.CrossRefGoogle ScholarPubMed
Wang, L, Li, B, Pan, MX, et al. (2014) Specific carotenoid intake is inversely associated with the risk of breast cancer among Chinese women. Br J Nutr 111, 16861695. doi: 10.1017/S000711451300411X.CrossRefGoogle ScholarPubMed
Pantavos, A, Ruiter, R, Feskens, EF, et al. (2015) Total dietary antioxidant capacity, individual antioxidant intake and breast cancer risk: the Rotterdam Study. Int J Cancer 136, 21782186. doi: 10.1002/ijc.29249.CrossRefGoogle ScholarPubMed
Larsson, SC, Bergkvist, L & Wolk, A (2010) Dietary carotenoids and risk of hormone receptor-defined breast cancer in a prospective cohort of Swedish women. Eur J Cancer 46, 10791085. doi: 10.1016/j.ejca.2010.01.004.CrossRefGoogle Scholar
Uesugi, S, Ishihara, J, Iso, H, et al. (2017) Dietary intake of antioxidant vitamins and risk of stroke: the Japan Public Health Center–based Prospective Study. Eur J Clin Nutr 71, 11791185. doi: 10.1038/ejcn.2017.71.CrossRefGoogle ScholarPubMed
UNESCO, United Nations Educational, Scientific and Cultural Organization. (2011) Intangible heritage lists. The Mediterranean diet. http://www.unesco.org/culture/ich/en/RL/00394.Google Scholar
Giacosa, A, Barale, R, Bavaresco, L, et al. (2013) Cancer prevention in Europe: the Mediterranean diet as a protective choice. Eur J Cancer Prev 22, 9095. doi: 10.1097/CEJ.0b013e328354d2d7.CrossRefGoogle ScholarPubMed
Dai, J, Jones, DP, Goldberg, J, et al. (2008) Association between adherence to the Mediterranean diet and oxidative stress. Am J Clin Nutr 88, 13641370. DOI: 10.3945/ajcn.2008.26528 Google Scholar
Tyrovolas, S & Panagiotakos, DB (2010) The role of Mediterranean type of diet on the development of cancer and cardiovascular disease, in the elderly: a systematic review. Maturitas 65, 122130. doi: 10.1016/j.maturitas.2009.07.003.CrossRefGoogle ScholarPubMed
Tosti, V, Bertozzi, B & Fontana, L (2018) Health benefits of the Mediterranean diet: metabolic and molecular mechanisms. J Gerontol A Biol Sci Med Sci 73, 318326. doi: 10.1093/gerona/glx227.CrossRefGoogle ScholarPubMed
Sofi, F, Macchi, C, Abbate, R, et al. (2014) Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr 17, 27692782. doi: 10.1017/S1368980013003169.CrossRefGoogle Scholar
Buil-Cosiales, P, Toledo, E, Salas-Salvadó, J, et al. (2016) Association between dietary fibre intake and fruit, vegetable or whole-grain consumption and the risk of CVD: results from the PREvención con DIeta MEDiterránea (PREDIMED) trial. Br J Nutr 116, 534546. doi: 10.1017/S0007114516002099.CrossRefGoogle ScholarPubMed
Vardavas, CI, Flouris, AD, Tsatsakis, A, et al. (2011) Does adherence to the Mediterranean diet have a protective effect against active and passive smoking? Public Health 125, 121128. doi: 10.1016/j.puhe.2010.11.012.CrossRefGoogle Scholar
Kispert, SE, Marentette, J, Campian, EC, et al. (2017) Cigarette smoke-induced urothelial cell damage: potential role of platelet-activating factor. Physiol Rep 5, e13177. doi: 10.14814/phy2.13177.CrossRefGoogle ScholarPubMed
Buckland, G, Ros, MM, Roswall, N, et al. (2014) Adherence to the Mediterranean diet and risk of bladder cancer in the EPIC cohort study. Int J Cancer 134, 25042511. DOI: 10.1002/ijc.28573 CrossRefGoogle Scholar
Sorli-Aguilar, M, Martin-Lujan, F, Flores-Mateo, G, et al. (2016) Dietary patterns are associated with lung function among Spanish smokers without respiratory disease. BMC Pulm Med 16, 162. doi: 10.1186/s12890-016-0326-x.CrossRefGoogle ScholarPubMed
Gnagnarella, P, Maisonneuve, P, Bellomi, M, et al. (2013) Red meat, Mediterranean diet and lung cancer risk among heavy smokers in the COSMOS screening study. Ann Oncol 24, 26062611. doi: 10.1093/annonc/mdt302 CrossRefGoogle ScholarPubMed
Botteri, E, Iodice, S, Bagnardi, V, et al. (2008) Smoking and colorectal cancer: a meta-analysis. JAMA 300, 27652778. doi: 10.1001/jama.2008.839.CrossRefGoogle ScholarPubMed
Dixon, LB, Subar, AF, Peters, U, et al. (2007) Adherence to the USDA food guide, DASH eating plan, and Mediterranean dietary pattern reduces risk of colorectal adenoma. J Nutr 137, 2443e50. doi: 10.1093/jn/137.11.2443.CrossRefGoogle Scholar
Kontou, N, Psaltopoulou, T, Soupos, N, et al. (2013) The mediating effect of Mediterranean diet on the relation between smoking and colorectal cancer: a case-control study. Eur J Public Health 23, 742746. doi: 10.1093/eurpub/cks109 CrossRefGoogle ScholarPubMed
Tsuda, T (2012) Dietary anthocyanin-rich plants: Biochemical basis and recent progress in healthy benefits studies. Mol Nutr Food Res 56, 159170. doi: 10.1002/mnfr.201100526.CrossRefGoogle Scholar
Meulenberg, EP (2009) Phenolics: occurrence and immunochemical detection in environment and food. Molecules 14, 439473. doi: 10.3390/molecules14010439.CrossRefGoogle ScholarPubMed
Del Bo’, C, Bernardi, S, Marino, M, et al. (2019) Systematic review on polyphenol intake and health outcomes: is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients 11, 1355. doi: 10.3390/nu11061355.Google ScholarPubMed
Bøhn, SK, Myhrstad, MC, Thoresen, M, et al. (2010) Blood cell gene expression associated with cellular stress defense is modulated by antioxidant-rich food in a randomised controlled clinical trial of male smokers. BMC Med 8, 54. doi: 10.1186/1741-7015-8-54.CrossRefGoogle Scholar
Del Bo’, C, Porrini, M, Fracassetti, D, et al. (2014) A single serving of blueberry (V. corymbosum) modulates peripheral arterial dysfunction induced by acute cigarette smoking in young volunteers: a randomized-controlled trial. Food Funct 5, 31073116. doi: 10.1039/c4fo00570h.CrossRefGoogle ScholarPubMed
Butt, MS, Ahmad, RS, Sultan, MT, et al. (2015) Green tea and anticancer perspectives: updates from last decade. Crit Rev Food Sci Nutr 55, 792805. doi: 10.1080/10408398.2012.680205.CrossRefGoogle ScholarPubMed
Ellinger, S, Müller, N, Stehle, P, et al. (2011) Consumption of green tea or green tea products: is there an evidence for antioxidant effects from controlled interventional studies? Phytomedicine 18, 903915. doi: 10.1016/j.phymed.2011.06.006.CrossRefGoogle ScholarPubMed
Yuan, JM (2013) Cancer prevention by green tea: evidence from epidemiologic studies. Am J Clin Nutr 98, 1676S1681S. doi: 10.3945/ajcn.113.058271.CrossRefGoogle ScholarPubMed
Pandey, KB & Rizvi, SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2, 270278. doi: 10.4161/oxim.2.5.9498.CrossRefGoogle ScholarPubMed
De Marchi, U, Biasutto, L, Garbisa, S, et al. (2009) Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: a demonstration of the ambivalent redox character of polyphenols. Biochim Biophys Acta 1787, 14251432. doi: 10.1016/j.bbabio.2009.06.002.CrossRefGoogle ScholarPubMed
Bouayed, J & Bohn, T (2010) Exogenous antioxidants – double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev 3, 228337. DOI: 10.4161/oxim.3.4.12858 CrossRefGoogle ScholarPubMed
Halliwell, B, Zhao, K & Whiteman, ML (2000) The gastrointestinal tract: a major site of antioxidant action? Free Radic Res 33, 819830. doi: 10.1080/10715760000301341.CrossRefGoogle Scholar
Ganesh, B, Talole, SD & Dikshit, R (2009) Tobacco, alcohol and tea drinking as risk factors for esophageal cancer: a case-control study from Mumbai, India. Cancer Epidemiol 33, 431434. doi: 10.1016/j.canep.2009.09.002.CrossRefGoogle ScholarPubMed
Carocho, M & Ferreira, ICFR (2013) The role of phenolic compounds in the fight against cancer–a review. Anticancer Agents Med Chem 13, 12361258. doi: 10.2174/18715206113139990301.CrossRefGoogle ScholarPubMed
van Dam, RM, Naidoo, N & Landberg, R (2013) Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: review of recent findings. Curr Opin Lipidol 24, 2533. doi: 10.1097/MOL.0b013e32835bcdff.CrossRefGoogle ScholarPubMed
Cassidy, A, Mukamal, KJ, Liu, L, et al. (2013) High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 127, 188196. DOI: 10.1161/CIRCULATIONAHA.112.122408 CrossRefGoogle Scholar
Bondonno, NP, Dalgaard, F, Kyrø, C, et al. (2019) Flavonoid intake is associated with lower mortality in the Danish Diet Cancer and Health Cohort. Nat Commun 10, 3651. doi: 10.1038/s41467-019-11622-x CrossRefGoogle ScholarPubMed
Halliwell, B (2008) Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 476, 107112. doi: 10.1016/j.abb.2008.01.028.k CrossRefGoogle ScholarPubMed
Halliwell, B (2011) Free radicals and antioxidants – quo vadis? Trends Pharmacol Sci 32, 125130. doi: 10.1016/j.tips.2010.12.002.CrossRefGoogle Scholar
Bardia, A, Tleyjeh, IM, Cerhan, JR, et al. (2008) Efficacy of antioxidant supplementation in reducing primary cancer incidence and mortality: systematic review and meta-analysis. Mayo Clin Proc 83, 2334. doi: 10.4065/83.1.23.CrossRefGoogle ScholarPubMed
Myung, SK, Kim, Y, Ju, W, et al. (2010) Effects of antioxidant supplements on cancer prevention: meta-analysis of randomized controlled trials. Ann Oncol 21, 166179. doi: 10.1093/annonc/mdp286.CrossRefGoogle ScholarPubMed
Wolfe, KL, Kang, X, He, X, et al. (2008) Cellular antioxidant activity of common fruits. J Agric Food Chem 56, 84188426. doi: 10.1021/jf801381y.CrossRefGoogle ScholarPubMed
Song, W, Derito, CM, Liu, MK, et al. (2010) Cellular antioxidant activity of common vegetables. J Agric Food Chem 58, 66216629. doi: 10.1021/jf9035832.CrossRefGoogle ScholarPubMed
Martel, J, Ojcius, DM, Ko, YF, et al. (2019) Hormetic effects of phytochemicals on health and longevity. Trends Endocrinol Metab 30, 335346. doi: 10.1016/j.tem.2019.04.001.CrossRefGoogle ScholarPubMed
USDA, United States Department of Agriculture and United States Department of Health and Human Services. (2010) Dietary Guidelines for Americans 2010, 7th ed. U.S. Government Printing Office, December, Washington, DC. Available from http://www.dietaryguidelines.gov Google Scholar
Louhelainen, N, Rytilä, P, Haahtela, T, et al. (2009) Persistence of oxidant and protease burden in the airways after smoking cessation. BMC Pulm Med 9, 25. doi: 10.1186/1471-2466-9-25.CrossRefGoogle ScholarPubMed
Jha, P & Peto, R (2014) Global effects of smoking, of quitting, and of taxing tobacco. New Engl J Med 370, 6068. doi: 10.1056/NEJMra1308383.CrossRefGoogle ScholarPubMed
Mons, U, Muscat, JE, Modesto, J, et al. (2016) Effect of smoking reduction and cessation on the plasma levels of the oxidative stress biomarker glutathione – post-hoc analysis of data from a smoking cessation trial. Free Radic Biol Med 91, 172177. doi: 10.1016/j.freeradbiomed.2015.12.018.CrossRefGoogle ScholarPubMed
Chang, JT, Anic, GM, Rostron, BL, et al. (2020) Cigarette smoking reduction and health risks: a systematic review and meta-analysis. Nicotine Tob Res ntaa156. doi: 10.1093/ntr/ntaa156.Google ScholarPubMed
Breland, A, Soule, E, Lopez, A, et al. (2016) Electronic cigarettes: what are they and what do they do? Ann N Y Acad Sci 1394, 530. doi: 10.1111/nyas.12977 CrossRefGoogle Scholar
Farsalinos, K, Spyrou, A, Stefopoulos, C, et al. (2015) Nicotine absorption from electronic cigarette use: comparison between experienced consumers (vapers) and naïve users (smokers). Sci Rep 5, 11269. doi: 10.1038/srep11269.CrossRefGoogle Scholar
Dawkins, L & Corcoran, O (2013) Acute electronic cigarette use: nicotine delivery and subjective effects in regular users. Psychopharmacology 231, 401407. doi: 10.1007/s00213-013-3249-8.CrossRefGoogle ScholarPubMed
Henningfield, JE (1995) Nicotine medications for smoking cessation. N Engl J Med 333, 11961203. doi: 10.1056/NEJM199511023331807.CrossRefGoogle ScholarPubMed
Choi, JH, Dresler, CM, Norton, MR, et al. (2003) Pharmacokinetics of a nicotine polacrilex lozenge. Nicotine Tob Res 5, 635644. doi: 10.1080/1462220031000158690 CrossRefGoogle ScholarPubMed
Polosa, R, Caponnetto, P, Morjaria, JB, et al. (2011) Effect of an electronic nicotine delivery device (e-Cigarette) on smoking reduction and cessation: a prospective 6-month pilot study. BMC Public Health 11, 786. doi: 10.1186/1471-2458-11-786.CrossRefGoogle ScholarPubMed
Siegel, MB, Tanwar, KL, Wood, KS (2011) Electronic cigarettes as a smoking-cessation: tool results from an online survey. Am J Prev Med 40, 472475. doi: 10.1016/j.amepre.2010.12.006 CrossRefGoogle ScholarPubMed
Caponnetto, P, Campagna, D, Cibella, F, et al. (2013) EffiCiency and Safety of an eLectronic cigAreTte (ECLAT) as tobacco cigarettes substitute: a prospective 12-month randomized control design study. PLoS One 8, e66317. doi: 10.1371/journal.pone.0066317. Erratum in: PLoS One 2014; 9. doi: 10.1371/annotation/e12c22d3-a42b-455d-9100-6c7ee45d58d0.CrossRefGoogle ScholarPubMed
Rom, O, Pecorelli, A, Valacchi, G, et al. (2015) Are E-cigarettes a safe and good alternative to cigarette smoking? Ann N Y Acad Sci 1340, 6574. doi: 10.1111/nyas.12609.CrossRefGoogle ScholarPubMed
Han, S, Chen, H, Zhang, X, et al. (2015) Levels of selected groups of compounds in refill solutions for electronic cigarettes. Nicotine Tob Res 18, 708714. doi: 10.1093/ntr/ntv189.CrossRefGoogle ScholarPubMed
Neale, BW, Mesler, EL, Young, M, et al. (2005) Propylene glycol-induced lactic acidosis in a patient with normal renal function: a proposed mechanism and monitoring recommendations. Ann Pharmacother 39, 17321736. doi: 10.1345/aph.1G083.CrossRefGoogle Scholar
Safety assessment and regulatory authority to use flavors: focus on electronic nicotine delivery systems and flavored tobacco products. Washington (DC): Federal Emergency Management Agency; 2013. https://www.femaflavor.org/safety-assessment-and-regulatory-authority-useflavors-focus-electronic-nicotine-delivery-systems (accessed Oct 2017).Google Scholar
Hutzler, C, Paschke, M, Kruschinski, S, et al. (2014) Chemical hazards present in liquids and vapors of electronic cigarettes. Arch Toxicol 88, 12951308. doi: 10.1007/s00204-014-1294-7.CrossRefGoogle ScholarPubMed
Williams, M, Bozhilov, K, Ghai, S, et al. (2017) Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs. PLoS One 12, e0175430. doi: 10.1371/journal.pone.0175430.CrossRefGoogle ScholarPubMed
Goniewicz, ML, Knysak, J, Gawron, M, et al. (2014) Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob Control 23, 133139. doi: 10.1136/tobaccocontrol-2012-050859.CrossRefGoogle ScholarPubMed
Harrell, PT, Simmons, VN, Correa, JB, et al. (2014) Electronic nicotine delivery systems (“e-cigarettes”): review of safety and smoking cessation efficacy. Otolaryngol Head Neck Surg 151, 381393. doi: 10.1177/0194599814536847.CrossRefGoogle ScholarPubMed
Vardavas, CI, Anagnostopoulos, N, Kougias, M, et al. (2012) Short-term pulmonary effects of using an electronic cigarette: impact on respiratory flow resistance, impedance, and exhaled nitric oxide. Chest 141, 14001406. doi: 10.1378/chest.11-2443.CrossRefGoogle ScholarPubMed
Schraufnagel, DE, Blasi, F, Drummond, MB, et al.; Forum of International Respiratory Societies. (2014) Electronic cigarettes. A position statement of the Forum of International Respiratory Societies. Am J Respir Crit Care Med 190, 611618. doi: 10.1164/rccm.201407-1198PP.CrossRefGoogle Scholar
Dinakar, C & O’Connor, GT (2016) The health effects of electronic cigarettes. N Engl J Med 375, 13721381. doi: 10.1056/NEJMc1613869.CrossRefGoogle ScholarPubMed
Glasser, AM, Collins, L, Pearson, JL, et al. (2017) Overview of electronic nicotine delivery systems: a systematic review. Am J Prev Med 52, e3366. doi: 10.1016/j.amepre.2016.10.036.CrossRefGoogle ScholarPubMed
Stephens, WE (2017) Comparing the cancer potencies of emissions from vapourised nicotine products including e-cigarettes with those of tobacco smoke. Tob Control tobaccocontrol-2017-053808. doi: 10.1136/tobaccocontrol 2017-053808.CrossRefGoogle Scholar
Shields, PG, Berman, M, Brasky, TM, et al. (2017) A review of pulmonary toxicity of electronic cigarettes in the context of smoking: a focus on inflammation. Cancer Epidemiol Biomarkers Prev 26, 11751191. doi: 10.1158/1055-9965.EPI-17-0358.CrossRefGoogle ScholarPubMed
Levy, DT, Borland, R, Villanti, AC, et al. (2017) The application of a decision-theoretic model to estimate the public health impact of vaporized nicotine product initiation in the United States. Nicotine Tob Res 19, 149159. doi: 10.1093/ntr/ntw158.CrossRefGoogle ScholarPubMed
Müezzinler, A, Mons, U, Gellert, C, et al. (2015) Smoking and all-cause mortality in older adults. Results from the CHANCES Consortium. Am J Prev Med 49, e53e63. doi: 10.1016/j.amepre.2015.04.004.CrossRefGoogle ScholarPubMed
Fricker, M, Goggins, BJ, Mateer, S, et al. (2018) Chronic cigarette smoke exposure induces systemic hypoxia that drives intestinal dysfunction. JCI Insight 3, e94040. doi: 10.1172/jci.insight.94040.CrossRefGoogle ScholarPubMed
van den Berg, R, van Vliet, T, Broekmans, WMR, et al. (2001) A vegetable/fruit concentrate with high antioxidant capacity has no effect on biomarkers of antioxidant status in male smokers. J Nutr 131, 17141722. doi: 10.1093/jn/131.6.1714.CrossRefGoogle ScholarPubMed
Mattson, MP (2008) Dietary factors, hormesis and health. Ageing Res Rev 7, 4348. doi: 10.1016/j.arr.2007.08.004.CrossRefGoogle ScholarPubMed
Halliwell, B (2013) The antioxidant paradox: less paradoxical now? Br J Clin Pharmacol 5, 637644. doi: 10.1111/j.1365-2125.2012.04272.x CrossRefGoogle Scholar
Mathers, CD & Loncar, D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3, e442. doi: 10.1371/journal.pmed.0030442.CrossRefGoogle ScholarPubMed
Beaglehole, R, Bonita, R, Yach, D, et al. (2015) A tobacco-free world: a call to action to phase out the sale of tobacco products by 2040. Lancet 385, 10111018. doi: 10.1016/S0140-6736(15)60133-7.CrossRefGoogle Scholar
Halliwell, B (2012) Free radicals and antioxidants: updating a personal view. Nutr Rev 70, 257265. doi: 10.1111/j.1753-4887.2012.00476.x CrossRefGoogle ScholarPubMed
Jackson, MJ. (2011) Control of reactive oxygen species production in contracting skeletal muscle. Antioxid Redox Signal 15, 24772486. doi: 10.1089/ars.2011.3976.CrossRefGoogle ScholarPubMed
Pasupathi, P, Saravanan, G & Farook, J (2009) Oxidative stress biomarkers and antioxidant status in cigarette smokers compared to nonsmokers. J Pharm Sci Res 1, 5562.Google Scholar
Chiu, YW, Chuang, HY, Huang, MC, et al. (2009) Comparison of plasma antioxidant levels and related metabolic parameters between smokers and non-smokers. Kaohsiung J Med Sci 25, 423430.CrossRefGoogle ScholarPubMed
Jain, A, Agrawal, BK, Varma, M, et al. (2009) Antioxidant status and smoking habits: relationship with diet. Singapore Med J 50, 624627.Google ScholarPubMed
Kim, SH, Kim, JS, Shin, HS, et al. (2003) Influence of smoking on markers of oxidative stress and serum mineral concentrations in teenage girls in Korea. Nutrition 19, 240243. doi: 10.1016/s0899-9007(02)01002-x.CrossRefGoogle ScholarPubMed
Yamaguchi, Y, Haginaka, J, Morimoto, S, et al. (2005) Facilitated nitration and oxidation of LDL in cigarette smokers. Eur J Clin Invest 35, 186193. doi: 10.1111/j.1365-2362.2005.01472.x.CrossRefGoogle ScholarPubMed
Garbin, U, Fratta Pasini, A, Stranieri, C, et al. (2009) Cigarette smoking blocks the protective expression of Nrf2/ARE pathway in peripheral mononuclear cells of young heavy smokers favouring inflammation. PLoS ONE 4, e8225. doi: 10.1371/journal.pone.0008225.CrossRefGoogle ScholarPubMed
Moriarty, SE, Shah, JH, Lyn, M, et al. (2003) Oxidation of glutathione and cysteine in human plasma associated with smoking. Free Radic Biol Med 35, 15821588. doi: 10.1016/j.freeradbiomed.2003.09.006.CrossRefGoogle ScholarPubMed
Haj Mouhamed, D, Ezzaher, A, Neffati, F, et al. (2011) Effect of cigarette smoking on plasma uric acid concentrations. Environ Health Prev Med 16, 307312. doi: 10.1007/s12199-010-0198-2.CrossRefGoogle ScholarPubMed
Touvier, M, Kesse, E, Clavel-Chapelon, F, et al. (2005) Dual association of beta-carotene with risk of tobacco-related cancers in a cohort of French women. J Natl Cancer Inst 97, 13381344. doi: 10.1093/jnci/dji276.CrossRefGoogle Scholar
Kokkou, E, Siasos, G, Georgiopoulos, G, et al. (2016) The impact of dietary flavonoid supplementation on smoking-induced inflammatory process and fibrinolytic impairment. Atherosclerosis 251, 266272. doi: 10.1016/j.atherosclerosis.2016.06.054.CrossRefGoogle ScholarPubMed
McEvoy, CT, Schilling, D, Clay, N, et al. (2014) Vitamin C supplementation for pregnant smoking women and pulmonary function in their newborn infants: a randomized clinical trial. JAMA 311, 20742082. doi: 10.1001/jama.2014.5217.CrossRefGoogle ScholarPubMed
Virtamo, J, Taylor, PR, Kontto, J, et al. (2014) Effects of α-tocopherol and β-carotene supplementation on cancer incidence and mortality: 18-year postintervention follow-up of the Alpha-tocopherol, Beta-carotene Cancer Prevention Study. Int J Cancer 135, 178185. doi: 10.1002/ijc.28641.CrossRefGoogle ScholarPubMed
Chen, F, Li, Q, Yu, Y, et al. (2015) Association of vitamin C, vitamin D, vitamin E and risk of bladder cancer: a dose-response meta-analysis. Sci Rep 5, 9599. doi: 10.1038/srep09599.CrossRefGoogle ScholarPubMed
Kellen, E, Zeegers, M, Paulussen, A, et al. (2006) Fruit consumption reduces the effect of smoking on bladder cancer risk. The Belgian case control study on bladder cancer. Int J Cancer 118, 25722578. doi: 10.1002/ijc.21714.CrossRefGoogle ScholarPubMed
Balder, HF, Goldbohm, RA & van den Brandt, PA (2005) Dietary patterns associated with male lung cancer risk in the Netherlands Cohort Study. Cancer Epidemiol Biomarkers Prev 14, 483490. doi: 10.1158/1055-9965.EPI-04-0353.CrossRefGoogle ScholarPubMed
Karlsen, A, Svendsen, M, Seljeflot, I, et al. (2013) Kiwifruit decreases blood pressure and whole-blood platelet aggregation in male smokers. J Hum Hypertens 27, 126130. doi: 10.1038/jhh.2011.116.CrossRefGoogle ScholarPubMed
Karppi, J, Laukkanen, JA, Mäkikallio, TH, et al. (2012) Low β-carotene concentrations increase the risk of cardiovascular disease mortality among Finnish men with risk factors. Nutr Metab Cardiovasc Dis 22, 921928. doi: 10.1016/j.numecd.2012.01.008.CrossRefGoogle ScholarPubMed
Melo van Lent, D, Leermakers, ET, Hofman, A, et al. (2017) Association between lutein intake and lung function in adults: the Rotterdam Study. Br J Nutr 117, 720730. doi: 10.1017/S0007114517000319.CrossRefGoogle ScholarPubMed
Mehta, AJ, Cassidy, A, Litonjua, AA, et al. (2016) Dietary anthocyanin intake and age-related decline in lung function: longitudinal findings from the VA Normative Aging Study. Am J Clin Nutr 103, 542550. doi: 10.3945/ajcn.115.121467.CrossRefGoogle ScholarPubMed
Bravi, F, Bosetti, C, Filomeno, M, et al. (2013) Foods, nutrients and the risk of oral and pharyngeal cancer. Br J Cancer 109, 2904–10. doi: 10.1038/bjc.2013.667.CrossRefGoogle ScholarPubMed
Vieira, AR, Abar, L, Vingeliene, S, et al. (2016) Fruits, vegetables and lung cancer risk: a systematic review and meta-analysis. Ann Oncol 27, 8196. doi: 10.1093/annonc/mdv381.CrossRefGoogle ScholarPubMed