Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:30:44.875Z Has data issue: false hasContentIssue false

Weak Formal Schemes

Published online by Cambridge University Press:  22 January 2016

David Meredith*
Affiliation:
Mass. Inst. of TechnologyCambridge, Mass. 02138
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Throughout this paper, (R, m) denotes a (noetherian) local ring R with maximal ideal m.

In [5], Monsky and Washnitzer define weakly complete R-algebras with respect to m. In brief, an R-algebra A is weakly complete if

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1972

References

[1] Bourbaki, N., Algebra Commutative (Chapitres I-IV). Paris Actualites Scientifiques et Industrielles 1290 and 1293 (1961).Google Scholar
[2] Godement, R., Theorie des Faisceaux. Paris, Actualites Scientifiques et Industrielles 1252 (1964).Google Scholar
[3] Grothendieck, A., Elements de Geometrie Algebrique. Paris, IHES 4 and 11 (196061).Google Scholar
[4] Monsky, P., Formal Cohomology II. Ann. of Math., 88 (1968), pp. 218238.CrossRefGoogle Scholar
[5] Monsky, P. and Washnitzer, G., Formal Cohomology I. Ann. of Math. 88 (1968), pp. 181217.CrossRefGoogle Scholar
[6] Nagata, M., Local Rings, New York, Interscience, 1962.Google Scholar
[7] Lubkin, S., A p-adic Proof of Weil’s Conjectures, Ann. of Math. 87 (1968), pp. 107255.CrossRefGoogle Scholar
[8] Serre, J.-P., Geometrie Algebrique et Geometrie Analytique, Paris, Annales Inst. Fourier 6 (195556), pp. 142.Google Scholar
[9] Zariski, O. and Samuel, P., Commutative Algebra. New York, Van Nostrand, 1958.Google Scholar
[10] Fulton, W., A Note on Weakly Complete Algebras. Bulletin, Amer. Math. Soc. 75 (1969), pp. 591593.CrossRefGoogle Scholar