Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T23:23:37.506Z Has data issue: false hasContentIssue false

The three-arc and three-separated-arc properties of meromorphic functions

Published online by Cambridge University Press:  22 January 2016

Frederick Bagemihl*
Affiliation:
University of Wisconsin-Milwaukee
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Γ be the unit circle and D be the open unit disk in the complex plane, and denote the Riemann sphere by Ω. Suppose that f(z) is a meromorphic function in D, and that ζ ∈ Γ.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1974

References

[1] Bagemihl, F., Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 379382.Google Scholar
[2] Bagemihl, F., The principal and chordal principal cluster sets of a certain meromorphic function, Rev. Roum. Math. Pures Appl. 15 (1970), 36.Google Scholar
[3] Bagemihl, F., Piranian, G. and Young, G. S., Intersections of cluster sets, Bul. Inst. Politehn. Ia§i (N.S.) 5 (1959), 2934.Google Scholar
[4] Belna, C. L., Intersections of arc-cluster sets for meromorphic functions, Nagoya Math. J. 40 (1970), 213220.Google Scholar
[5] Gresser, J. T., On uniform approximation by rational functions with an application to chordal cluster sets, Nagoya Math J. 34 (1969), 143148.Google Scholar
[6] Hurwitz, A. and Courant, R., Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen (3d ed.), Berlin, 1929.Google Scholar
[7] Nevanlinna, R., Eindeutige analytische Funktionen (2d ed.), Berlin, 1953.CrossRefGoogle Scholar