Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T00:01:10.119Z Has data issue: false hasContentIssue false

Deformations and equitopological deformations of strongly pseudoconvex manifolds

Published online by Cambridge University Press:  22 January 2016

Stephen S.-T. Yau*
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Mass. 02138, Department of Mathematics, University of Illinois at Chicago Circle, Chicago, Illinois 60680
*
Department of Mathematics, Princeton University, Princeton, N.J. 08540
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the main problems in complex analysis has been to determine when two open sets D1, D2 in Cn are biholomorphically equivalent. In [26] Poincaré studied perturbations of the unit ball B2 in C2 of a particular kind, and found necessary and sufficient conditions on a first order perturbation that the perturbed domain be biholomorphically equivalent to B2. Recently Burns, Shnider and Wells [7] (cf. also Chern-Moser [9]) have studied the deformations of strongly pseudoconvex manifolds. They proved that there is no finite-dimensional deformation theory for M if one keeps track of the boundary.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1981

References

[1] Andreotti, A. and Grauert, H., Theoremes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193259.Google Scholar
[2] Artin, M., Algebraic construction of Brieskorn’s resolutions, J. Alg., 29 (1974), 330348.CrossRefGoogle Scholar
[3] Artin, M., Algebraic approximation of structures over complete local rings, Publ. Math. I.H.E.S., 36 (1969), 2358.CrossRefGoogle Scholar
[4] Bennett, B. and Yau, S. S.-T., Milnor number and invariants of strongly pseudo-convex manifolds. (Preprint)Google Scholar
[5] Brieskorn, E., Rationale singularitäten komplexer Flächen, Inv. Math., 4 (1967/68), 336358.Google Scholar
[6] Brieskorn, E., Singular elements of semi-simple algebraic groups, Proc. Inter. Congr. Math., Nice 1970, Gauthier-Villars, Paris 1971, 2, 279284.Google Scholar
[7] Burns, D., Schnider, S., and Wells, R., Deformations of strongly pseudoconvex domains, Inv. math., 46 (1978), 237253.CrossRefGoogle Scholar
[8] Burns, D. and Wahl, J., Local contributions to global deformations of surfaces, Inv. math., 26 (1974), 6788.Google Scholar
[9] Chern, S. and Moser, J., Real hypersurfaces in complex manifolds, Acta Math., 133 (1974), 219271.Google Scholar
[10] Grauert, H., Über Modifikationen und exzeptionelle analytische Mengen, Math. An., 146 (1962), 331368.Google Scholar
[10′] Griffiths, P., The Extension Problem for compact submanifolds of complex manifolds I (the case of trivial normal bundle). Proc. Conf. on Complex Analysis, Minneapolis, Springer-Verlag 1964.Google Scholar
[11] Hironaka, H., Bimeromorphic smoothing of complex analytic spaces, notes, University of Warwick (1971).Google Scholar
[12] Hirzebruch, F., Neumann, W., and Koh, S., Differentiable Manifolds and Quadratic Forms, Lecture Notes in Pure and Applied Mathematics, 4, Marcel Dekker, New York 1971.Google Scholar
[13] Hirzebruch, F., Topological methods in algebraic geometry, 3rd ed., Springer-Verlag, New York 1966.Google Scholar
[14] Karras, U., On pencils of curves and deformations of minimally elliptic singularities. (Preprint)Google Scholar
[15] Karras, U., On equisingular deformations of Cone-like surface singularities. (Preprint)Google Scholar
[16] Kodaira, K., A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. Math., 75 (1962), 146162.Google Scholar
[17] Kodaira, K., On stability of compact submanifolds of complex manifolds, Amer. J. Math., 85 (1963), 7994.CrossRefGoogle Scholar
[18] Kodaira, K., and Spencer, D., On deformations of complex analytic structures I, II, Ann. Math., 67 (1958), 328466.Google Scholar
[19] Laufer, H., Normal Two-Dimensional Singularities, Ann. Math. Studies No. 71, Princeton University Press, 1971.Google Scholar
[20] Laufer, H., Deformations of resolutions of two-dimensional singularities, Rice University Studies 59 (1973), 1, 5396.Google Scholar
[21] Laufer, H., Taut two-dimensional singularities, Math. Ann., 205 (1973), 131164.Google Scholar
[22] Laufer, H., On μ, for surface singularities, Proc. Symposia Pure Math., 30, Vol. 1 (1977), 4549.Google Scholar
[23] Laufer, H., Ambient deformations for one-dimensional exceptional sets. (Preprint).Google Scholar
[24] Le, D. and Ramanujan, C., The invariance of Milnor’s number implies the invariance of the topological type, Amer. J. Math., 98 (1976), 6778.Google Scholar
[25] Milnor, J., Singular points of complex hypersurfaces, Ann. Math. Studies, no. 61, Princeton Univ. Press, 1968.Google Scholar
[26] Poincaré, H., Les fonctions analytiques de deux variables et la representation conforme. Rend. Circ. Mat. Palermo, 23 (1907), 185220.CrossRefGoogle Scholar
[27] Riemenschneider, O., Bermerkungen zur Deformationstheorie nicht-rationaler Singuläritaten, Manu. Math., 14 (1974), 91100.CrossRefGoogle Scholar
[28] Riemenschneider, O., Halbstetigkeitssätz für 1-konvexe holomorphe Abbildungen, Math. Ann., 192 (1971), 216226.Google Scholar
[29] Riemenschneider, O., Familien komplexer Räume mit streng pseudokonvex exzeptioneller Fraser, Comm. Math. Helv., 51 (1976), 547565.Google Scholar
[30] Schlessinger, M., On rigid singularities, Rice University Studies, 59 (1973), Vol. 1, 147162.Google Scholar
[31] Seidenberg, A., Derivations and integral closure, Proc. J. Math., 16 (1966), 167174.Google Scholar
[32] Serre, J.-P., Groupes algebriques et corps de classes, Actualites Scientifiques et industrielles 1264 Hermann, Paris, 1959.Google Scholar
[33] Siu, Y.-T., Analytic sheaf cohomology groups of dimension n of n-dimensional complex spaces, Trans. A.M.S., 143 (1969), 7794.Google Scholar
[34] Wahl, J., Equisingular deformations of normal surface singularities, I., Ann. Math., 104 (1976), 325356.Google Scholar
[35] Wahl, J., Vanishing Theorems for Resolution of surface singularities, Inv. math., 31 (1975),1741.Google Scholar
[36] Yau, Stephen S.-T., The signature of Milnor fibres and duality theorem for strongly pseudoconvex manifolds, Inv. math., 46 (1978), 8197.Google Scholar
[37] Yau, Stephen S.-T., Noether formula for strongly pseudoconvex manifolds and various numerical invariants for isolated singularities. (Preprint)Google Scholar
[38] Lieberman, D. and Rossi, H., Deformations of strongly pseudoconvex manifolds. (Preprint)Google Scholar