Published online by Cambridge University Press: 22 January 2016
One of the main problems in complex analysis has been to determine when two open sets D1, D2 in Cn are biholomorphically equivalent. In [26] Poincaré studied perturbations of the unit ball B2 in C2 of a particular kind, and found necessary and sufficient conditions on a first order perturbation that the perturbed domain be biholomorphically equivalent to B2. Recently Burns, Shnider and Wells [7] (cf. also Chern-Moser [9]) have studied the deformations of strongly pseudoconvex manifolds. They proved that there is no finite-dimensional deformation theory for M if one keeps track of the boundary.