Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T23:22:05.889Z Has data issue: false hasContentIssue false

Characterization of Relative Domination Principle

Published online by Cambridge University Press:  22 January 2016

Isao Higuchi
Affiliation:
Suzuka College of Technology, Nagoya University
Masayuki Itô
Affiliation:
Suzuka College of Technology, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be a locally compact and σ-compact Abelian group and ξ be the Haar measure of X. A positive Radon measure N on X is called a convolution kernel when we regard it as a kernel of potentials of convolution type. M. Itô [4], [6] characterized the convolution kernel which satisfies the domination principle. The purpose of this paper is to characterize the relative domination principle for the convolution kernels.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1973

References

[1] Choquet, G. and Deny, J.: Sur l’équation de convolution η = η*σ, C. R. Acad. Sc. Paris, 250, 1960, p. 799801.Google Scholar
[2] Deny, J.: Familles fondamentales: noyaux associés, Ann. Inst. Fourier, 3, 1951, p. 76101.CrossRefGoogle Scholar
[3] Deny, J.: Noyaux de convolution de Hunt et noyaux associés à une famille fondamentale, Ann. Inst. Fourier, 12, 1962, p. 643667.Google Scholar
[4] Itô, M.: Noyaux de convolution réguliers et noyaux de convolution singuliers, Nagoya Math. J., 44, 1971, p. 6177.CrossRefGoogle Scholar
[5] Itô, M.: Sur le principe de domination pour les noyaux de convolution (to appear).Google Scholar
[6] Itô, M.: Une caractérisation du principe de domination pour les noyaux de convolution (to appear).Google Scholar