Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T18:56:09.961Z Has data issue: false hasContentIssue false

ORBIFOLD ASPECTS OF CERTAIN OCCULT PERIOD MAPS

Published online by Cambridge University Press:  27 November 2019

ZHIWEI ZHENG*
Affiliation:
Tsinghua University, Yau Mathematical Sciences Center, China email [email protected]

Abstract

We first characterize the automorphism groups of Hodge structures of cubic threefolds and cubic fourfolds. Then we determine for some complex projective manifolds of small dimension (cubic surfaces, cubic threefolds, and nonhyperelliptic curves of genus 3 or 4), the action of their automorphism groups on Hodge structures of associated cyclic covers, and thus confirm conjectures made by Kudla and Rapoport in (Pacific J. Math. 260(2) (2012), 565–581).

Type
Article
Copyright
© 2019 Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author is supported by Yau Mathematical Sciences Center, Tsinghua University.

References

Allcock, D., Carlson, J. A. and Toledo, D., The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geom. 11(4) (2002), 659724.CrossRefGoogle Scholar
Allcock, D., Carlson, J. A. and Toledo, D., The moduli space of cubic threefolds as a ball quotient, Mem. Amer. Math. Soc. 209(985) (2011), xii+70.Google Scholar
Beauville, A., “Les singularités du diviseur 𝛩 de la jacobienne intermédiaire de l’hypersurface cubique dans P4”, in Algebraic Threefolds (Varenna, 1981), Lecture Notes in Mathematics 947, Springer, Berlin–New York, 1982, 190208.CrossRefGoogle Scholar
Beauville, A., “Le groupe de monodromie des familles universelles d’hypersurfaces et d’intersections complètes”, in Complex Analysis and Algebraic Geometry (Göttingen, 1985), Lecture Notes in Mathematics 1194, Springer, Berlin, 1986, 818.CrossRefGoogle Scholar
Beauville, A. and Donagi, R., La variété des droites d’une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 301(14) (1985), 703706.Google Scholar
Bourbaki, N., Lie Groups and Lie Algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer, Berlin, 2002, Translated from the 1968 French original by Andrew Pressley.CrossRefGoogle Scholar
Burns, D. and Rapoport, M., On the Torelli problem for Kählerian K - 3 surfaces, Ann. Sci. Éc. Norm. Supér. (4) 8(2) (1975), 235273.CrossRefGoogle Scholar
Charles, F., A remark on the torelli theorem for cubic fourfolds, preprint, 2012, arXiv:1209.4509.Google Scholar
Clemens, C. H. and Griffiths, P. A., The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281356.CrossRefGoogle Scholar
Flenner, H., The infinitesimal Torelli problem for zero sets of sections of vector bundles, Math. Z. 193(2) (1986), 307322.CrossRefGoogle Scholar
Griffiths, P. A., On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460495; ibid. (2), 90:496–541, 1969.CrossRefGoogle Scholar
Huybrechts, D., Lectures on K3 Surfaces, Cambridge Studies in Advanced Mathematics 158, Cambridge University Press, Cambridge, 2016.CrossRefGoogle Scholar
Javanpeykar, A. and Loughran, D., Complete intersections: moduli, Torelli, and good reduction, Math. Ann. 368(3–4) (2017), 11911225.CrossRefGoogle Scholar
Kondō, S., A complex hyperbolic structure for the moduli space of curves of genus three, J. Reine Angew. Math. 525 (2000), 219232.CrossRefGoogle Scholar
Kondō, S., “The moduli space of curves of genus 4 and Deligne–Mostow’s complex reflection groups”, in Algebraic Geometry 2000, Azumino (Hotaka), Advanced Studies in Pure Mathematics 36, Mathematical Society of Japan, Tokyo, 2002, 383400.CrossRefGoogle Scholar
Kudla, S. and Rapoport, M., On occult period maps, Pacific J. Math. 260(2) (2012), 565581.CrossRefGoogle Scholar
Lang, S., Abelian Varieties, Interscience Tracts in Pure and Applied Mathematics, No. 7, Interscience Publishers, Inc., New York, 1959, Interscience Publishers Ltd., London.Google Scholar
Looijenga, E., The period map for cubic fourfolds, Invent. Math. 177(1) (2009), 213233.CrossRefGoogle Scholar
Looijenga, E. and Peters, C., Torelli theorems for Kähler K3 surfaces, Compos. Math. 42(2) (1980/81), 145186.Google Scholar
Looijenga, E. and Swierstra, R., The period map for cubic threefolds, Compos. Math. 143(4) (2007), 10371049.CrossRefGoogle Scholar
Matsumura, H. and Monsky, P., On the automorphisms of hypersurfaces, J. Math. Kyoto Univ. 3 (1963/1964), 347361.CrossRefGoogle Scholar
Matsusaka, T. and Mumford, D., Two fundamental theorems on deformations of polarized varieties, Amer. J. Math. 86 (1964), 668684.CrossRefGoogle Scholar
Mumford, D., Fogarty, J. and Kirwan, F., Geometric Invariant Theory, 3rd edn, Ergebnisse der Mathematik und ihrer Grenzgebiete (2 [Results in Mathematics and Related Areas (2)] 34, Springer, Berlin, 1994.CrossRefGoogle Scholar
Nikulin, V. V., Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43(1) (1979), 111177; 238.Google Scholar
Pjateckiǐ-Šapiro, I. I. and Šafarevič, I. R., Torelli’s theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530572.Google Scholar
Voisin, C., Théorème de Torelli pour les cubiques de ℙ5, Invent. Math. 86(3) (1986), 577601.CrossRefGoogle Scholar
Voisin, C., Erratum: “A Torelli theorem for cubics in $\mathbb{P}^{5}$” (French), Invent. Math. 86(3) (1986), 577–601; mr0860684. Invent. Math., 172(2) (2008), 455–458.Google Scholar