Didymella bryoniae (anamorph Phoma cucurbitacearum) is an ascomycete that causes gummy stem blight, a foliar disease that occurs on cucurbits in greenhouses and fields throughout the world. In a previous study using RAPD analysis, little genetic diversity was found among isolates of D. bryoniae from New York and South Carolina, USA. Here we report the use of amplified fragment length polymorphism (AFLP) analysis to assess the genetic variation within a worldwide collection of D. bryoniae. 102 field and greenhouse isolates from ten states in the USA (California, Delaware, Florida, Georgia, Indiana, Maryland, Michigan, Oklahoma, South Carolina, and Texas) and seven other countries (Australia, Canada, China, Greece, Israel, Sweden, and The Netherlands) were examined. Seven different AFLP primer-pair combinations generated 450 bands, of which 134 were polymorphic (30%). Using cluster analysis, two groups and a total of seven subgroups were delineated. Representative isolates varied in their virulence on muskmelon and watermelon seedlings, but the degree of virulence was not strongly associated with AFLP groupings. However, isolates from the northern USA grouped separately from isolates originating from the southern USA.