Molecular beam deposition (MB) of thin film metal oxide is prospective for application in gas sensor technology due to the well-controlled oxide molecular fluxes during creation of multi-oxide structures with improved characteristics. However, the MB process leads to some oxygen deficiency in the oxide. Further application of the MB technology (and, in general, the e-beam oxide deposition in vacuum) for processing of sensor structures needs the control and correction of the oxygen stoichiometry by adding in-situ atomic oxygen to the growing material or via the thin film oxidation after deposition.
Thin films (50 to 500 nm) of SnOx and TiOx were deposited on SiO2/(001)Si substrates at 100°C by MB from SnO2 and TiO2 sources. The film stoichiometry in the as-deposited state and after annealing in vacuum and in oxygen is characterized by XRD, TEM and RBS. Oxygen annealing transformed the strongly non-stoichiometric SnO (Romarchite) in the as-deposited state to Cassiterite, SnO2. Structure transformations in the TiO2 films during annealing are also discussed.