Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:25:33.066Z Has data issue: false hasContentIssue false

Can We Determine the Barrier Resistance for Electron Transport in Ligand Stabilized Nanoparticles from Integral Conductance Measurements?

Published online by Cambridge University Press:  21 February 2011

U. Simon*
Affiliation:
University of Essen, Institute of Inorganic Chemistry, 45127 Essen, Germany
Get access

Abstract

By means of integral temperature dependent conductance measurements, the effective capacitance of ligand stabilized nanoparticles, arranged in dense packings or networks, can be deduced from the activation energy of the charge transport, for which the use of the Landauer formula is proposed. According to this, the barrier resistance in ligand stabilized nanoparticle arrangements depends predominantly on the inter particle spacing rather than on the chemical composition of the molecules. Comparison with data of the single molecule resistance determined by local probe techniques or by theoretical methods shows remarkable aggreement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schön, G., and Simon, U., Colloid Polym. Sci. 273, p. 101 (1995); idid. 273, p. 202 (1995).Google Scholar
2. Fenske, D., and Krautscheid, H., Angew. Chem. Int. Ed. Engl. 29, p. 1425 (1990)Google Scholar
3. Simon, U., Schtith, F., Schunk, S., Wang, X., and Liebau, F., Angew. Chem. Int. Ed. Engl. 36, p. 1117 (1997)Google Scholar
4. Likharev, K.K., IBM J. Res. Develop. 32, p.144 (1988)Google Scholar
5. Schmid, G. (Ed.), Clusters and Colloids, VCH -Wiley, Germany, 1994 Google Scholar
6.see e.g. Simon, U. in Braunstein, P., Oro, L.A., and Raithby, P.R., (Eds.), Metal Clusters in Chemistry, Wiley-VCH, Germany, 1999, Vol. 3, pp. 13421363 and references thereinGoogle Scholar
7. Simon, U., Flesch, R., Wiggers, H., Schön, G., and Schmid, G., J. Mater. Chem. 8, p. 517 (1998); G. Schmid, L.F. Chi, Adv. Mater. 10, p. 515 (1998)Google Scholar
8. Datta, S., Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, 1995 Google Scholar
9. Dorogi, M., Gomez, J., Osifchin, R., Andres, R. P., and Reifenberger, R., Phys. Rev. B 52, p. 9071 (1995)Google Scholar
10. Sato, T., Ahmed, H., Brown, D., and Johnson, B. F. H., J. Appl. Phys. 82, p. 969 (1997)Google Scholar
11. Andres, R.P., Bielefeld, J.D., Henderson, J.I., Janes, D.B., Kolagunta, V.R., Kubiak, C.P., Mahoney, W.J., and Osifchin, R.G., Science, 272, p. 1323 (1996)Google Scholar
12. Andres, R.P., Datta, S., Janes, D.B., Kubiak, C.P., and Reifenberger, R., in Nalwa, N.S. (Ed.), Handbook of Nanotechnology and Nanostructured Materials, Vol. 3, pp. 180226, Academic Press, San Diego, 1999 Google Scholar
13. Samanta, M.P., Tian, W., and Datta, S., Phys. Rev. B 53, R7626 (1996)Google Scholar
14. Simon, U., and Fenske, D., unpublished resultsGoogle Scholar