The tribological properties of sputter-deposited MoS2 and MoS2-Ti films were investigated in this study. The deposited films were characterized using microprobe analysis for composition and x-ray diffraction (XRD) for structure. The frictional properties of the films were examined using a pin-on-disk (POD) with counterfaces of 440C steel, aluminum, tungsten carbide and alumina. The tests were run under low (25%), medium (50%) and high (70%) humidity levels. MoS2 films without Ti were first examined under cyclic humidity conditions between 25 and 50% R/H. The results showed that for steel, WC and alumina counterfaces, the effect of the higher humidity was to increase the friction, but lower friction could be recovered when the humidity was reduced back to 25%. For films containing Ti, the best results were obtained at a concentration of 20 at. % Ti. These films performed well for steel and WC counterfaces, but poorly against aluminum. The effect of deposition temperature (up to 450oC) was examined for MoS2 and MoS2-5% Ti films. Higher temperatures yielded more crystalline films, but the addition of Ti partially countered this effect. The POD test showed that at medium humidity levels the friction decreased with temperature, but increased slightly when tested under low humidity. In all cases, the 5% Ti-containing films had a fiction coefficient of about 0.1 below that for films without Ti.