By using tin chloride solution as the raw material, a nano-sized tin oxide powder with average particle size below 50 nm is generated by spray pyrolysis reaction. This study also examines the influences of the reaction parameters such as reaction temperature and the concentration of raw material solution on the powder properties. As the reaction temperature increases from 800 to 850 ℃, the average particle size of the generated powder increases from 20 nm to 30 nm. As the reaction temperature reaches 900 ℃, the droplets are composed of nano-particles with average size of 30 nm, while the average size of individual particles increases remarkably up to 80˜100 nm. When the tin concentration reaches 75 g/L, the average particle size of the powder is below 20 nm. When the tin concentration reaches 150 g/L, the droplets are composed of nano particles with average size around 30 nm, whereas the average size of independent particles increases up to 80˜100 nm. When the concentration reaches 400 g/L, the droplets are composed of nano-particles with average size of 30 nm.