The kinetics of the deposition of ruthenium thin films from the hydrogen assisted reduction of bis(2,2,6,6-tetramethyl-3,5-heptanedionato)(1,5-cyclooctadiene)ruthenium(II), [Ru(tmhd)2cod], in supercritical carbon dioxide was studied in order to develop a rate expression for the growth rate as well as to determine a mechanism for the process. The deposition temperature was varied from 240°C to 280°C and the apparent activation energy was 45.3 kJ/mol. Deposition rates up to 30 nm/min were attained. The deposition rate dependence on precursor concentrations between 0 and 0.2 wt. % was studied at 260°C with excess hydrogen and revealed first order deposition kinetics with respect to precursor at concentrations lower then 0.06 wt. % and zero order dependence at concentrations above 0.06 wt. %. The effect of reaction pressure on the growth rate was studied at a constant reaction temperature of 260°C and pressures between 159 bar to 200 bar and found to have no measurable effect on the growth rate.