The electrochemical decomposition of water is an attractive method, however, the performance of the electrodes and efficiencies are of great concern in its large scale production. In this context, we wish to report here the superior performance of Ni-multiwalled carbon nanotube composite as cathode in the decomposition of water. The current voltage curves recorded with this electrode in different media showed a significant electrocatalysis in the reduction of hydrogen ion; the background electrolysis is shifted in the anodic direction. The nanocomposite composition has been found to be crucial in the efficient production of hydrogen. A coulombic efficiency of about 68% has been obtained at this electrode with a hydrogen production rate of 130L/m2 d. This electrode is more efficient than the 316L stainless steel (composition in percentage: C 0.019, Cr 17.3, Mo 2.04, Ni 11.3, Mn 1.04, N 0.041, Fe bulk) cathode that produces 10 ml/h at an area of 20 cm2 (5L/m2.h) (2). The results obtained with different electrolytes, performance variation with electrode composition, and current densities will be presented. The trials carried out using solar panel instead of DC power source showed similar hydrogen production rates and efficiencies.