Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:21:44.113Z Has data issue: false hasContentIssue false

Ultrafast Charge Carrier Dynamics and Photoelectrochemical Properties of Hydrogen-treated TiO2 Nanowire Arrays

Published online by Cambridge University Press:  18 April 2012

Damon A. Wheeler
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064
Gongming Wang
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064
Bob C. Fitzmorris
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064
Staci A. Adams
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064
Yat Li*
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064
Jin Z. Zhang*
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064
*
*Corresponding Author: [email protected], Tel: (831) 459-1952; [email protected], Tel: (831) 459-3776
*Corresponding Author: [email protected], Tel: (831) 459-1952; [email protected], Tel: (831) 459-3776
Get access

Abstract

Here we report studies of photoelectrochemical (PEC) properties and ultrafast charge carrier relaxation dynamics of hydrogen-treated TiO2 (H:TiO2) nanowire arrays. PEC measurements showed the photocurrent density of the H:TiO2 was approximately double that of TiO2, attributed to increased donor density due to the formation of oxygen vacancies in H:TiO2 due to hydrogen treatment Charge carrier dynamics of H:TiO2, measured using fs transient absorption spectroscopy, showed a fast decay of ∼20 ps followed by slower decay persisting to tens of picoseconds. The fast decay is attributed to bandedge electron-hole recombination and the slower decay is attributed to recombination from trap states. Visible absorption is attributed to either electronic transitions from the valence band to oxygen vacancy states or from oxygen vacancy states to the conduction band of the TiO2, which is supported by incident photon to current conversion efficiency (IPCE) data. H:TiO2 represents a unique material with improved photoelectrochemical properties for applications including PEC water splitting, solar cells, and photocatalysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Fujishima, A.; Honda, K. Nature 1972, 238, 3738.Google Scholar
(2) Alexander, B. D.; Kulesza, P. J.; Rutkowska, L.; Solarska, R.; Augustynski, J. Journal Of Materials Chemistry 2008, 18, 22982303.Google Scholar
(3) Hensel, J.; Wang, G.; Li, Y.; Zhang, J. Z. Nano letters 2010, 10, 478483.Google Scholar
(4) Larsen, G.; Fitzmorris, R. C.; Zhang, J. Z.; Zhao, Y. The Journal of Physical Chemistry C.Google Scholar
(5) Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746750.Google Scholar
(6) Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Nano Letters 2011, 11, 30263033.Google Scholar
(7) Liu, B.; Aydil, E. S. Journal of the American Chemical Society 2009, 131, 39853990.Google Scholar
(8) Newhouse, R. J.; Wang, H.; Hensel, J. K.; Wheeler, D. A.; Zou, S.; Zhang, J. Z. The Journal of Physical Chemistry Letters 2011, 2, 228.Google Scholar
(9) Chen, C.; Huang, Y.; Chung, W.; Tsai, D.; Tiong, K. Journal of Materials Science: Materials in Electronics 2009, 20, 303306.Google Scholar
(10) Colombo, D. P.; Bowman, R. M. The Journal of Physical Chemistry 1996, 100, 1844518449.Google Scholar
(11) Rothenberger, G.; Moser, J.; Graetzel, M.; Serpone, N.; Sharma, D. K. Journal of the American Chemical Society 1985, 107, 80548059.Google Scholar
(12) Serpone, N.; Lawless, D.; Khairutdinov, R.; Pelizzetti, E. The Journal of Physical Chemistry 1995, 99, 1665516661.Google Scholar
(13) Zhou, W.-c.; Li, Z.-c.; Zhang, Z.-j.; Onda, K.; Ogihara, S.; Okimoto, Y.; Koshihara, S.-y. Frontiers of Materials Science in China 2009, 3, 403408.Google Scholar
(14) Cronemeyer, D. C. Physical Review 1959, 113, 12221226.Google Scholar
(15) Cronemeyer, D. C.; Gilleo, M. A. Physical Review 1951, 82, 975976.Google Scholar
(16) Kim, W.-T.; Kim, C.-D.; Choi, Q. W. Physical Review B 1984, 30, 36253628.Google Scholar
(17) Nakamura, R.; Nakato, Y. Journal of the American Chemical Society 2004, 126, 12901298.Google Scholar
(18) Imanishi, A.; Okamura, T.; Ohashi, N.; Nakamura, R.; Nakato, Y. Journal of the American Chemical Society 2007, 129, 1156911578.Google Scholar