Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T13:59:06.043Z Has data issue: false hasContentIssue false

VSS-induced NiSi2 Nanocrystal Memory

Published online by Cambridge University Press:  31 January 2011

Bei Li
Affiliation:
[email protected], University of California, Riverside, Electrical Engineering, Riverside, California, United States
Jianlin Liu
Affiliation:
[email protected], University of California, Riverside, Electrical Engineering, Riverside, California, United States
Get access

Abstract

NiSi2 nanocrystals were synthesized and used as the floating gate for nonvolatile memory application. Vapor-solid-solid mechanism was employed to grow the NiSi2 nanocrystals by introducing SiH4 onto the Ni catalysts-covered SiO2/Si substrate at 600°C. The average size and density of the NiSi2 nanocrystals are 7∼10nm and 3×1011 cm-2, respectively. Metal-oxide-semiconductor field-effect-transistor memory with NiSi2 nanocrystals was fabricated and characterized. Programming/erasing, retention and endurance measurements were carried out and good performances were demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hu, C. W., Chang, T. C., Liu, P. T., Tu, C. H., Lee, S. K., Sze, S. M., Chang, C. Y., Chiou, B. S., and Tseng, T. Y., Appl. Phys. Lett. 92, 152115 (2008)Google Scholar
2 Kim, J., Yang, J., Lee, J., and Hong, J., Appl. Phys. Lett. 92, 013512 (2008)Google Scholar
3 Yang, F. M., Chang, T. C., Liu, P. T., Yeh, Y. H., Yu, Y. C., Lin, J. Y., Sze, S. M., and Lou, J. C., Thin Solid Films 516, 360 (2007)Google Scholar
4 Chen, W. R., Chang, T. C., Yeh, J. L., Sze, S. M., and Chang, C. Y., J. Appl. Phys. Lett. 104, 094303 (2008)Google Scholar
5 Zhu, Y., Li, B., Liu, J. L., Liu, G. F., and Yarmoff, J. A., Appl. Phys. Lett. 89, 233113 (2006)Google Scholar
6 Wang, Y. W., Schmidt, V., Senz, S., and Goesele, U., Nature Nano. 1, 186 (2006)Google Scholar
7 Lensch-Falk, J. L., Hemesath, E. R., Perea, D. E., and Lauhon, L. J., J. Mater. Chem. 19, 849 (2009)Google Scholar
8 Nordmark, H., Nagayoshi, H., Matsumoto, N., Nishimura, S., Terashima, K., Marioara, C. D., Walmsley, J. C., Holmestad, R., and Ulyashin, A., J. Appl. Phys. Lett. 105, 043507 (2009)Google Scholar
9 Stumper, J., Lewerenz, H. J., and Pettenkofer, C., Phys. Rev. B 41, 1592 (1990).Google Scholar
10 Grunthaner, F. J., Grunthaner, P. J., Vasquez, R. P., Lewis, B. F., and Maserjian, J., J. Vac. Sci. Technol. 16, 1443 (1979).Google Scholar
11 Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D., Handbook of X-Ray Photoelectron Spectroscopy. Physical Electronics: Eden Prairie MN (1995).Google Scholar
12 Nguyen, T. T. A. and Cinti, R., Physica Scripta. T4, 176 (1983).Google Scholar
13 Schmid, P. E.; Ho, P. S.; Tan, T. Y. J. Vac. Sci. Technol. 1982, 20 (3), 688689.Google Scholar
14 Nash, P. Phase Diagrams of Binary Nickel Alloy, Monograph Series on Alloy Ahase Diagram, 6, ASM International, The Material Information Society USA 1992.Google Scholar