Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:13:24.617Z Has data issue: false hasContentIssue false

Volatile Liquid Precursors for the Chemical Vapor Deposition (CVD) of Thin Films Containing Tungsten

Published online by Cambridge University Press:  17 March 2011

Roy G. Gordon
Affiliation:
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
Seán Barry
Affiliation:
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
Randy N. R. Broomhall-Dillard
Affiliation:
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
Valerie A. Wagner
Affiliation:
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
Ying Wang
Affiliation:
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
Get access

Abstract

A new CVD process is described for depositing conformal layers containing tungsten, tungsten nitride or tungsten oxide. A film of tungsten metal is deposited by vaporizing liquid tungsten(0) pentacarbonyl 1-methylbutylisonitrile and passing the vapors over a surface heated to 400 to 500 °C. This process can be used to form gate electrodes compatible with ultrathin dielectric layers. Tungsten nitride films are deposited by combining ammonia gas with this tungsten-containing vapor and using substrates at temperatures of 250 to 400 °C. Tungsten nitride can act as a barrier to diffusion of copper in microelectronic circuits. Tungsten oxide films are deposited by adding oxygen gas to the tungsten-containing vapor and using substrates at temperatures of 200 to 300 °C. These tungsten oxide films can be used as part of electrochromic windows, mirrors or displays. Physical properties of several related liquid tungsten compounds are described. These low-viscosity liquids are stable to air and water. These new compounds have a number of advantages over tungsten-containing CVD precursors used previously.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schmitz, J. E. J., Chemical Vapor Deposition of Tungsten and Tungsten Silicides for VLSI/ULSI Applications, Noyes Publications, Park Ridge, New Jersey, USA, 1992.Google Scholar
2. Reference 1, pp. 199203.Google Scholar
3. See, for example, Haigh, J., Burkhardt, G. and Blake, K., J. Crystal Growth, 155, 266271 (1995).10.1016/0022-0248(95)00234-0Google Scholar
4. Buchanan, D. A., McFeely, F. R. and Yurkas, J. J., Appl. Phys. Lett., 73, 16761678 (1998).10.1063/1.122242Google Scholar
5. Kelsey, J. E., Goldberg, C., Nuesca, G., Peterson, G. and Kaloyeros, A. E., J. Vac. Sci. Technol., B 17, 11011104 (1999).10.1116/1.590703Google Scholar
6. Davazoglou, D., Chimica Chronica, New Series, 23, 423428 (1994).Google Scholar
7. Moffat, J., Newton, M. V. and Papenmeier, G. J., J. Org. Chem., 27, 4058 (1962).10.1021/jo01058a510Google Scholar
8. Schuster, R. E., Scott, J. E. and Casanova, J. Jr., J. Org. Synth., 46, 7577 (1966); R. E. Schuster, J. E. Scott and J. Casanova, Jr., Org. Syntheses Collective Volume 5, 772-774 (1973).Google Scholar
9. Coville, N. J. and Albers, M. O., Inorg. Chim. Acta 65, L7–L8 (1982).10.1016/S0020-1693(00)93476-5Google Scholar
10. Kontes Catalog number 285600-0000.Google Scholar
11. Albers, M. O., Singleton, E. and Coville, N. J., J. Chem. Ed., 63, 444 (1986).10.1021/ed063p444Google Scholar
12. Density of solid from X-ray data.Google Scholar
13. Chen, C.-L., Lee, H.-H., Hsieh, T.-Y., Lee, G.-H., Peng, S.-M. and Liu, S.-T., Organometallics, 17, 19371940 (1998); F. E. Hahn and M. Tamm, J. Organomet. Chem., 410, C9-C12 (1991).10.1021/om970500+Google Scholar
14. Gordon, R. G., International Patent Application WO 99/28532 (1999).Google Scholar