Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T07:37:39.119Z Has data issue: false hasContentIssue false

Variation of Hardness and Modulus across the Thickness of Zr-Cu-Al Metallic Glass Ribbons

Published online by Cambridge University Press:  09 January 2013

Z. Humberto Melgarejo
Affiliation:
Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706, U.S.A.
J.E. Jakes
Affiliation:
Performance Enhanced Biopolymers, United States Forest Service, Forest Products Laboratory, Madison, WI 53726, U.S.A.
J. Hwang
Affiliation:
Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706, U.S.A.
Y.E. Kalay
Affiliation:
Ames Laboratory (DOE), Ames, Iowa 50011, USA and Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, U.S.A.
M.J. Kramer
Affiliation:
Ames Laboratory (DOE), Ames, Iowa 50011, USA and Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, U.S.A.
P.M. Voyles
Affiliation:
Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706, U.S.A. Department of Materials Science and Engineering, and Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706, U.S.A.
D.S. Stone
Affiliation:
Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706, U.S.A. Department of Materials Science and Engineering, and Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706, U.S.A.
Get access

Abstract

We investigate through-thickness hardness and modulus of Zr50Cu45Al5 metallic glass melt-spun ribbon. Because of their thinness, the ribbons are challenging to measure, so we employ a novel nanoindentation based-method to remove artifacts caused by ribbon flexing and edge effects. Hardness and modulus vary approximately linearly across the thickness but, unlike bulk ingots, the side of the ribbon that cooled most quickly had the highest hardness and modulus. This “inverse” variation may be caused by the fast-moving solidification front, which might conceivably, for instance, push free volume in advance of it. Annealing near Tg causes both hardness and modulus to increase and become more uniform across the thickness.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kumar, G., Tang, H.X., Schroers, J., Nature 457, 868 (2009).10.1038/nature07718CrossRefGoogle Scholar
Plummer, D., Goodall, R., Figueroa, I.A., and Todd, I. J. of Non-Cryst. Solids. 357, 814 (2001).10.1016/j.jnoncrysol.2010.11.002CrossRefGoogle Scholar
Liu, Y., Bei, H., Liu, C.T., and George, E.P., Appl. Phys. Lett. 90, 71909 (2007).10.1063/1.2678909CrossRefGoogle Scholar
Jiang, W.H., Liu, F.X., Wang, Y.D., Zhang, H.F., Choo, H., and Liaw, P.K., Mater. Sci. Eng. A. 430, 350 (2006).10.1016/j.msea.2006.05.042CrossRefGoogle Scholar
Liu, Z.Y., Yang, Y., Guo, S., Liu, X.J., Lu, J., Liu, Y.H., and Liu, C.T., J. Alloys Compd. 509, 3269 (2011).10.1016/j.jallcom.2010.12.095CrossRefGoogle Scholar
Jakes, J.E., Frihart, C.R., Beecher, J.F., Moon, R.J., Resto, P.J., Melgarejo, Z.H., Suarez, O.M., Baumgart, H., Elmustafa, A.A., and Stone, D.S., J. Mater. Res. 24, 1016 (2009).10.1557/jmr.2009.0076CrossRefGoogle Scholar
Jakes, J.E., Frihart, C.R., Beecher, J.F., Moon, R.J., and Stone, D.S.,. J. Mater. Res. 23, 1113 (2008).10.1557/jmr.2008.0131CrossRefGoogle Scholar
Kalay, I., Kramer, M.J., and Napolitano, R.E., Metall. Mater. Trans. A: 42, 1144 (2011).10.1007/s11661-010-0531-9CrossRefGoogle Scholar
Hwang, J., Melgarejo, Z.H., Kalay, Y.E., Kalay, I., Kramer, M.J., Stone, D.S., and Voyles, P.M., Phys. Rev. Lett. 108, 195505 (2012).10.1103/PhysRevLett.108.195505CrossRefGoogle Scholar
Oliver, W.C., and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).10.1557/JMR.1992.1564CrossRefGoogle Scholar
Bolshakov, A., and Pharr, G.M., J. Mater. Res. 13, 1049 (1998).10.1557/JMR.1998.0146CrossRefGoogle Scholar
Jakes, J.E., and Stone, D.S., Philos. Mag. 91, 1387 (2011).10.1080/14786435.2010.495360CrossRefGoogle Scholar
Zambon, A., Badan, B., Vedovato, G., and Ramous, E., Mater. Sci. Eng. A. 304, 592(2001).10.1016/S0921-5093(00)01541-0CrossRefGoogle Scholar
Tkatch, V.I., Denisenko, S.N., and Beloshov, O.N., Acta Mater. 45, 2821(1997).10.1016/S1359-6454(96)00377-1CrossRefGoogle Scholar
Tkatch, V.I., Limanovskii, A.I., Denisenko, S.N., and Rassolov, S.G., Mater. Sci. Eng. A. 323, 91(2002).10.1016/S0921-5093(01)01346-6CrossRefGoogle Scholar
Tsui, T.Y., Oliver, W.C., and Pharr, G.M., J. Mater. Res. 11, (1996) 752.10.1557/JMR.1996.0091CrossRefGoogle Scholar
Bolshakov, A., Oliver, W.C., and Pharr, G.M., J. Mater. Res. 11, 760 (1996).10.1557/JMR.1996.0092CrossRefGoogle Scholar
Faupel, F., Frank, W., Macht, M.P., Mehrer, H., Naundorf, V., Ratzke, K., Schober, H.R., Sharma, S.K., and Teichler, H., Rev. Modern Phys. 75, 237 (2003).10.1103/RevModPhys.75.237CrossRefGoogle Scholar