Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:31:23.107Z Has data issue: false hasContentIssue false

Ultrafast Carrier Dynamics and Recombination in Green Emitting InGaN MQW LED

Published online by Cambridge University Press:  01 February 2011

Alexander N. Cartwright
Affiliation:
[email protected], Universisty at Buffalo, Electrical Engineering, 332 Bonner Hall, University at Buffalo, Buffalo, NY, 14260, United States
M. C-K. Cheung
Affiliation:
[email protected], Universisty at Buffalo, The State University of New York, Department of Electrical Engineering, Buffalo, New York, 14260, United States
F. Shahedipour-Sandvik
Affiliation:
[email protected], University at Albany-State University of New York, College of Nanoscale Science and Engineering, Albany, New York, 12203, United States
J. R. Grandusky
Affiliation:
[email protected], University at Albany-State University of New York, College of Nanoscale Science and Engineering, Albany, New York, 12203, United States
M. Jamil
Affiliation:
[email protected], University at Albany-State University of New York, College of Nanoscale Science and Engineering, Albany, New York, 12203, United States
V. Jindal
Affiliation:
[email protected], University at Albany-State University of New York, College of Nano scale Science and Engineering, Albany, New York, 12203, United States
S. B. Schujman
Affiliation:
[email protected], Crystal IS Inc., Green Island, New York, 12183, United States
L. J. Schowalter
Affiliation:
[email protected], Crystal IS Inc., Green Island, New York, 12183, United States
C. Wetzel
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Future Chips Constellation, Troy, New York, 12180, United States
P. Li
Affiliation:
[email protected], Uniroyal Optoelectronics, Tampa, Florida, 33619, United States
T. Detchprohm
Affiliation:
[email protected], Uniroyal Optoelectronics, Tampa, Florida, 33619, United States
J. S. Nelson
Affiliation:
[email protected], Uniroyal Optoelectronics, Tampa, Florida, 33619, United States
Get access

Abstract

Time-resolved photoluminescence studies can provide useful information for the development of InGaN/GaN heterostructures for long wavelength visible emitters. In this paper, we present results of time-resolved photoluminescence from samples grown using two different approaches to achieve green emission from InGaN/GaN MQWs. In one approach, samples, with high indium incorporation, were grown on a high quality AlN substrate to achieve green emission. The resulting photoluminescence decay of the green luminescence is long-lived and non-exponential. Quantitative analysis showed that the decay has a stretched-exponential characteristic, typical of InGaN/GaN MQW with potential fluctuation along the growth plane. This carrier localization, in a structure with low defect density, proves to be an effective means to achieve green emission. In another approach, a piezoelectric Stark-like ladder effect is used. In this case, a methodical layer-by-layer growth homogeneity optimization process was adopted to achieve an optical transition below the electron to heavy-hole (e1hh1) transition when the quantum well is subjected to the strong piezoelectric polarization dipole. This approach has proven to be successful in achieving green luminescence on conventional sapphire substrates. The resulting photoluminescence decay at 14 K, of a sample grown by this approach, is single exponential and shorter in duration than the decay observed in the first approach. This exponential decay is consistent with previous AFM studies that revealed a homogeneous active region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nakamura, S. and Fasol, G., The blue laser diode: GaN based light emitters and lasers (Springer, Berlin; New York, 1997).Google Scholar
2 Chen, F., Cartwright, A. N., Lu, H., and Schaff, W. J., Physica E 20, 308 (2004).Google Scholar
3 Walukiewicz, W., Li, S. X., Wu, J., Yu, K. M., Ager, J. W., Haller, E. E., Lu, H., and Schaff, W. J., J. Cryst. Growth 269, 119 (2004).Google Scholar
4 Davydov, V. Y. and Klochikhin, A. A., Semiconductors 38, 861 (2004).Google Scholar
5 Nishimura, S., Terashima, K., and Nagayoshi, H., in Conference Record of the IEEE Photovoltaic Specialists Conference Conference Record of the 31st IEEE Photovoltaic Specialists Conference - 2005, p. 725.Google Scholar
6 Gardner, N. F., Bhat, J., Collins, D., Cook, L., Craford, M. G., Fletcher, R. M., Grillot, P., Gotz, W. K., Kueper, M., Khare, R., Kim, A., Krames, M. R., Harbers, G., Ludowise, M., Martin, P. S., and et al., in Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, (2002), p. 641.Google Scholar
7 Ho, I. H. and Stringfellow, G. B., Appl. Phys. Lett. 69, 2701 (1996).Google Scholar
8 Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 70, 2822 (1997).Google Scholar
9 Chen, F., Sweeney, P. M., Flynn, J. S., Keogh, D., Cartwright, A. N., and Cheung, M. C., in GaN and Related Alloys (Materials Research Society Symposium - Proceedings. v 693 2002., Boston, MA, United States, 2001), p. p. 377.Google Scholar
10 Mukai, T., Nagahama, S., Iwasa, N., Senoh, M., and Yamada, T., Condens, J. Phys.. Matter 13, 7089 (2001).Google Scholar
11 Lin, Y. S., Ma, K. J., Yang, C. C., and Weirich, T. E., J. Cryst. Growth 242, 35 (2002).Google Scholar
12 Ambacher, O., Majewski, J., Miskys, C., Link, A., Hermann, M., Eickhoff, M., Stutzmann, M., Bernardini, F., Fiorentini, V., Tilak, V., Schaff, B., and Eastman, L. F., J. Phys. Condens. Matter 14, 3399 (2002).Google Scholar
13 Tekeuchi, T., Sota, S., Katsuragawa, M., Kimori, M., Takeuchi, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L382 (1997).Google Scholar
14 Takeuchi, T., Wetzel, C., Yamaguchi, S., Sakai, H., Amano, H., Akasaki, I., Kaneko, Y., Nakagawa, S., Yamaoka, Y., and Yamada, N., Appl. Phys. Lett. 73, 1691 (1998).Google Scholar
15 Peng, L. H., Chuang, C. W., and Lou, L. H., Appl. Phys. Lett. 74, 795 (1999).Google Scholar
16 Wetzel, C., Takeuchi, T., Amano, H., and Akasaki, I., J. Appl. Phys. 85, 3786 (1999).Google Scholar
17 Wetzel, C., Takeuchi, T., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 2. 38, L163 (1999).Google Scholar
18 Wetzel, C., Takeuchi, T., Amano, H., and Akasaki, I., Phys. Rev. B 62, R13302 (2000).Google Scholar
19 Chen, F., Cheung, M. C., Sweeney, P. M., Kirkey, W. D., Furis, M., and Cartwright, A. N., J. Appl. Phys. 93, 4933 (2003).Google Scholar
20 Wetzel, T. D. Christian, Li, Peng, Nelson, Jeffrey S., Phys. Status Solidi C 1, 2421 (2004).Google Scholar
21 Wetzel, C., Salagaj, T., Detchprohm, T., Li, P., and Nelson, J. S., Appl. Phys. Lett. 85, 866 (2004).Google Scholar
22 Wetzel, P. L. T. D. J. S. N. C., Phys. Status Solidi C 2, 2871 (2005).Google Scholar
23 Shahedipour-Sandvik, F., Grandusky, J. R., Jamil, M., Jindal, V., Schujman, S. B., Schowalter, L. J., Liu, R., Ponce, F. A., Cheung, M., and Cartwright, A., in Proceedings of SPIE -The International Society for Optical Engineering Fifth International Conference on Solid State Lighting (SPIE, 2005), Vol. 5941, p. 37.Google Scholar
24 Kawakami, Y., Omae, K., Kaneta, A., Okamoto, K., Narukawa, Y., Mukai, T., and Fujita, S., J. Phys. Condens. Matter 13, 6993 (2001).Google Scholar
25 Cheung, M., Namkoong, G., Furis, M., Chen, F., Cartwright, A. N., Doolittle, W. A., and Brown, A., in Gan and Related Alloys (Materials Research Society Symposium - Proceedings. v 743 2002., Boston, MA, United States, 2002), p. 659.Google Scholar
26 Pophristic, M., Long, F. H., Tran, C., Ferguson, I. T., and Karlicek, R. F., J. Appl. Phys. 86, 1114 (1999).Google Scholar
27 Chichibu, S. F., Onuma, T., Aoyama, T., Nakajima, K., Ahmet, P., Chikyow, T., Sota, T., DenBaars, S. P., Nakamura, S., Kitamura, T., Ishida, Y., and Okumura, H., J. Vac. Sci. Technol. B 21, 1856 (2003).Google Scholar
28 Pophristic, M., Long, F. H., Tran, C., and Ferguson, I. T., MRS Internet J. Nitride Semicond. Res. 5S1, W11.58 (2000).Google Scholar
29 Pavesi, L., J. Appl. Phys. 80, 216 (1996).Google Scholar
30 Shlesinger, M. F., Annu. Rev. Phys. Chem. 39, 269 (1988).Google Scholar
31 García-Adeva, A. J. and Huber, D. L., J. Lumin. 92, 65 (2001).Google Scholar
32 Chen, R., J. Lumin. 102, 510 (2003).Google Scholar