Article contents
The Two-Step Growth Mechanism of MOCVD GaAs/Si
Published online by Cambridge University Press: 28 February 2011
Abstract
The growth mechanism and lattice defects are studied for GaAs/Si grown by the two-step MOCVD growth procedure using transmission electron microscopy (TEM). The large misfit stress between GaAs and Si is relieved by misfit dislocations at the GaAs/Si interface, which are introduced during epitaxial regrowth of the thin (<200A) polycrystalline buffer layer grown at 400∼450°C. The regrown buffer layer is relaxed to a nearly stress free state, and therefore a thick GaAs layer can subsequently be grown at the higher growth temperature (∼750°C). The tensile stress in GaAs at room temperature is shown to be a direct consequence of the misfit stress relaxation at the higher growth temperature. TEM revealed high density (<106cm−2) of the threading dislocations in the GaAs layer, contrary to the results of molten KOH etching.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1987
References
- 9
- Cited by