Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:28:36.274Z Has data issue: false hasContentIssue false

Trap Spectroscopy in Si3N4 Ultrathin Films Using Exoelectron Emission Method

Published online by Cambridge University Press:  11 February 2011

M. Naich
Affiliation:
Department of Electrical Engineering-Physical Electronics, Tel Aviv University, Ramat-Aviv, 69978, Israel
G. Rosenman
Affiliation:
Department of Electrical Engineering-Physical Electronics, Tel Aviv University, Ramat-Aviv, 69978, Israel
M. Molotskii
Affiliation:
Department of Electrical Engineering-Physical Electronics, Tel Aviv University, Ramat-Aviv, 69978, Israel
Ya. Roizin
Affiliation:
Tower Semiconductor, Ltd, Israel
Get access

Abstract

We developed an original thermally stimulated exoelectron emission spectroscopy method (TSEE) of measurements of the activation energy Φ of electron (hole) traps in ultrathin Si3N4 films. The temperature spectra of TSEE of 50A silicon nitride films demonstrate several peaks: three low temperature peaks (T1 =373K, T2=423K, T3=498K) and a high temperature maximum at T4 ∼750K. The obtained values of the energy activation are Φ1=0.82 eV, Φ2=0.93 eV, Φ3=1.09 eV, and Φ4=1.73 eV. TSEE results are shown to be consistent with Φ estimates obtained from microFLASH® two bit per cell memory transistor measurements. Electrons stored at traps with Φ4=1.73 eV explain excellent microFlash retention properties. We believe that deep traps in Silicon Nitride are Hydrogen containing centers, while Hydrogen hopping is the route cause of observed material degradation in course of TSEE measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Eitan, B., Pavan, P., Bloom, I., Aloni, E., Frommer, A., Finzi, D., IEEE Elect. Dev. Lett., 21, 543 (2000)Google Scholar
2 Roizin, Y., Gutman, M., Aloni, E., Kairys, V., Zisman, P., IEEE NVM Workshop, p. 128, Monterey, CA (2001).Google Scholar
3 Bibyk, S. B. and Kapoor, V. J., J. Appl. Phys. 52, 7317 (1981).Google Scholar
4 Matsuura, H., Yoshimoto, M., and Matsunami, H., Jpn. J. Appl. Phys., Part 2 34, L185 (1995).Google Scholar
5 Aozasa, H., Fujiwara, I., Nakamura, A., and Komatsu, Y., Jpn. J. Appl. Phys., Part 1 8 1441, (1999).Google Scholar
6 Kortov, V., Kirpa, V., Kaambre, H., phys. stat. sol. (a), 148, 295 (1995)Google Scholar
7 Kaambre, H., Proc. 5-th Intern. Symp. Exoelectron Emission and Dosimetry, Zvikov, Poland, 1976, p. 89 Google Scholar
8 Kortov, V., Zatsepin, A. F., Ushkova, V., Phys. Chem. Minerals, 12, 114 (1985)Google Scholar
9 Oster, L., Yaskolko, V., Haddad, J., phys. Stat. Sol. (a), 174, 431 (1999)Google Scholar
10 Iacconi, P., Petel, F., Lapraz, D., Bindi, R., phys. stat. sol. (a), 139, 489 (1993)Google Scholar
11 Dusane, S., Bhave, T., Hullavard, S., Bhoraskar, S. V., Lokhare, S., Sol. State. Commun., 111, 431 (1999)Google Scholar
12 Morbitzer, L., Sharman, A., Z. Phys, 181, 67 (1964)Google Scholar
13 Sakurai, T., Momose, Y., and Takeuchi, M., Phys. Stat. Sol., (a), 135, 245 (1993)Google Scholar
14 Robertson, J., J. Vac. Sci. Technol., B18, 1785 (2000)Google Scholar
15 Molotski, M., Naisch, M., Rosenman, G., will be published elsewhereGoogle Scholar
16 Rosenman, G., Naich, M., Molotskii, M., Dechtiar, Yu., Noskov, V., Appl. Phys. Lett., 80, 2743 (2002)Google Scholar
17 Roizin, Y., J. Non-Cryst. Solids, 137–138, 61 (1991)Google Scholar